

Research Project e-Triage IT-Supported Management of Mass Casualty Incidents

Coordinator:

Anton Donner DLR Institute of Communications and Navigation

Federal Ministry of Education and Research

SPONSORED BY THE

From Individual Emergencies to MCIs

LMU

October 2010

Registration Tags

Example: German Red Cross

LMU

back side

- Possibly large-area situation
- → Temporal development of situation:
 - Arriving rescue forces and operation control
 - **¬** Discovery and treatment of affected/injured persons
- Different organizations involved:
 - Manual merging of lists
 - Voice and paper as least common denominator
- → Injured persons "bypassing" rescue chain
- Deferred situation overview for operation control
- → Enormous stress for all involved persons:
 - → Reduced cognitive capabilities
 - Consequence: usage of well-known devices (daily work)

- Tablet-PC normally used for "Notarzteinsatzprotokoll" (standardized form emergency physicians have to fill in, aka "DIVI-Protokoll")
- MCI: each victim gets unique ID (RFID/2D-barcode); Tablet-PC switched to simplified triage graphical user interface
- Acquisition of data with Tablet-PC: ID + triage result + GPS coord. + photo + ...
- Immediate or cached wireless transmission to operation control
- ✓ If required, self-sufficient communication system via satellite
- Psychological acceptance studies

Design decision: Distributed Database System

- Mobile (Tablet-PCs) and fixed (local operation control) nodes are instances of database system
- Network link interruptions as key design parameter of architecture
- Operation in heterogeneous data networks (narrow band, terrestrial, satellite)
- Efficient data replication/synchronization mechanisms coping with satellite link delay
- Self-configuring system: automatic route discovery, resource management, etc.

e-Triage Data Management: Example Scenario

October 2010

Backhauling of Terrestrial Services

OSECE: On-site Emergency Communications Equipment

e-Triage - Slide 8 October 2010

e-Triage Satellite Communication Solution 1: Communication Suitcase

e-Triage Satellite Communication Solution 2: **Transportable Satellite Terminal**

October 2010

- Inmarsat BGAN terminal (part of communication suitcase) with limited 7 data rates (typically 64-128 kbit/s)
- Broadband satellite communication with "bulky" satellite terminal (similar DVB-RCS; e.g. 1 Mbit/s \leftarrow / 512 kbit/s \rightarrow)
- Self-aligning satellite antenna (vehicle mount) 7

e-Triage Architecture

OSECE = On-site Emergency Communications Equipment

e-Triage - Slide 12 October 2010

Summary

e-Triage is a self-contained concept for electronic MCI management:

- → Data collection
 - → ID + priority
- Data management
 - Distributed, self-organizing, and self-synchronizing database system
 - Same data basis for all decision makers at the same time
 - Documentation (e.g., training, investigation, or CBRN scenarios)

Voice/data services

- → Backhauling of GSM (GPRS)
- → Backhauling of DECT/VoIP
- Satellite communication
 - Dynamic network extension
 - No existing terrestrial infrastructure

- First system trials in spring/summer 2011
 - Invitation via AG Verletztenversorgung der Plattform "Schutz und Rettung von Menschen" (Projektträger VDI)
 - → ... or indicate your interest by mail to Anton.Donner@dlr.de
- → Future challenges:
 - → Standardization of data fields and formats (!)
 - Frequency regulatory issues
 - Connecting databases of regular control centers with operation control in the field

ETSI Satellite Earth Stations (SES)

World Class Standards

Satellite Emergency Communications (SatEC) Current Work Items:

- Multiple Alert Message Encapsulation over Satellite (MAMES) DTS/SES-00310
 - MAMES is created to support, make flexible and ease the diffusion of alert messages from authorities and alert providers to citizens by a broadcast mode or a trunking mode.
- Emergency Communication Cell over Satellite (ECCS) DTR/SES-00313
 - ECCS deals with the set up of a temporary emergency communication cells (e.g., IEEE 802.11, VHF/UHF, IEEE 802.16, GSM or TETRA) which are then linked/backhauled to the permanent infrastructure by means of a bi-directional satellite link.

Project Partners

Coordinator:

Deutsches Zentrum f
ür Luft- und Raumfahrt e.V. (DLR) Institute of Communications and Navigation

Partners:

- → TriaGnoSys GmbH, Weßling
- Euro-DMS Ltd., Olching
- Ludwig Maximilian University of Munich, Psychology Department, Munich

Kindly supported by:

- Bavarian Red Cross, Division Starnberg
 Emergency Medical Services and Civil Protection
- Trauma Center Murnau
 - Multi-regional Care Center
- Starnberg District Office, Department Traffic Systems, Fire Safety and Disaster Control Civil Protection Authority
- Staatliche Feuerwehrschule Geretsried Public Fire Brigade School

http://www.e-triage.de

Federal Ministry of Education and Research

