

African Risk Capacity: An African-led Financial Pool Providing Quick Response to Droughts and Floods for African Countries

UN-Spider Expert meeting Bonn, June 6, 2014

Enabling poor rural people to overcome poverty

Schweizerische Eidgenossenschaft Confederation suisse Confederazione Svizzera Confederazion svizra

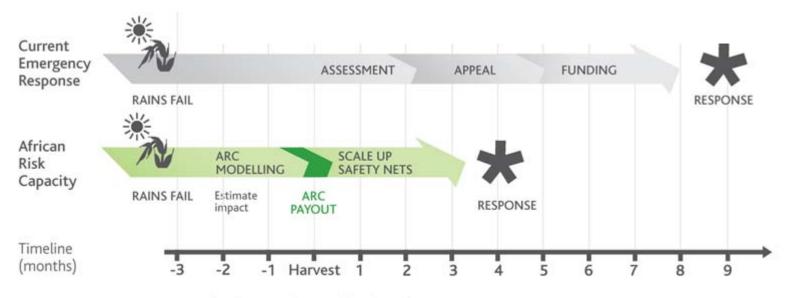
Swiss Agency for Development and Cooperation SDC

Peter Hoefsloot

Architect of ARC software (Africa RiskView); working with 3 software developers

With ARC since inception in 2007

Based in the Netherlands with frequent trips to Africa for training of countries


Expertise: Agriculture – Water – Remote Sensing - GIS

ARC Overview

Improved Disaster Response

Source: Clarke/Hill, Cost-Benefit Analysis of the African Risk Capacity Facility,

African Risk Capacity (ARC)

ARC is developed jointly by the African Union Commission and UN World Food Programme

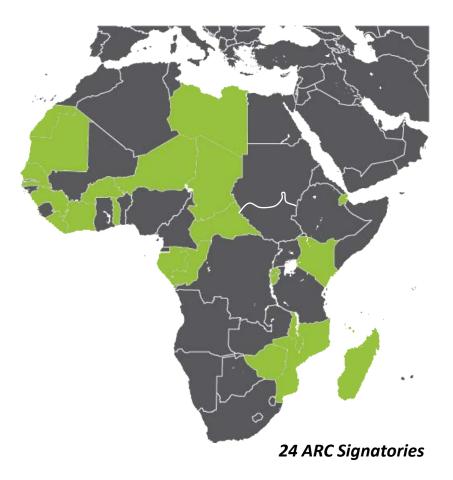
Two-entity structure:

- **ARC Agency**, a Specialised Agency of the African Union created by treaty. Based in Johannesburg
- ARC Insurance Company Limited, an insurance company based in Bermuda
- **Drought cover** is established. **Flood cover** underway.

ARC Agency

ARC Agency provides and enforces standards for its Member countries:

- Established by treaty, negotiated by 41 Member States in November 2012
- Managed by Governing Board, chaired by Dr Ngozi Okonjo-Iweala, Minister of Finance of Nigeria


ARC Agency

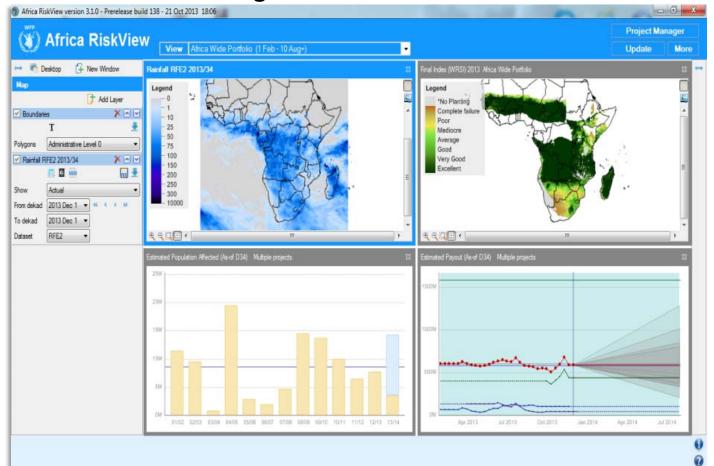
In 2013-14 worked with six countries towards participation in the **first insurance pool:**

 Kenya, Malawi, Mauritania, Mozambique, Niger and Senegal

Starting to work with **8 more** countries for 2015

Aims to reach **20 countries by 2019** by providing coverage against drought and flood

- Early Warning: Africa RiskView
- **Insurance:** Index-based insurance and risk pooling
- **Response:** Contingency Planning



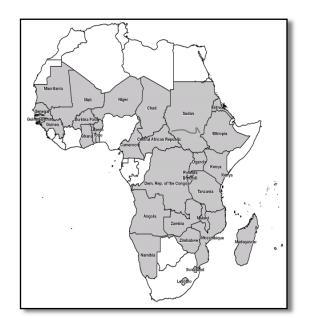
ARC Drought Index: Africa RiskView

Africa RiskView

Africa RiskView (ARV) is the software application developed to underpin the ARC index-based drought insurance contracts

Includes large historical data archive

Software is licensed but free

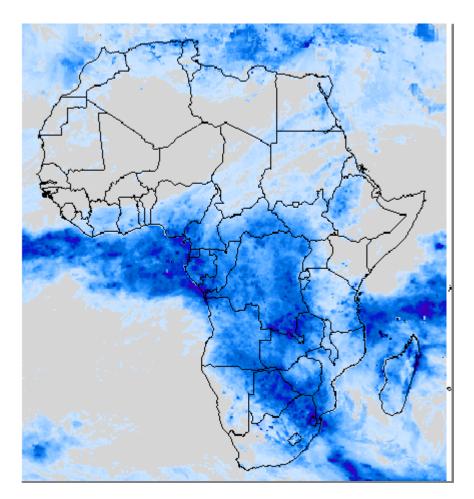

Anyone can request license

Africa RiskView

ARV translates satellite-based rainfall information into estimates of drought-affected populations and response costs to assist them for past and current rainfall seasons

- ✓ Standardised pan-African approach covering 32 countries and seven rainfall seasons
- ✓ 100% objective and replicable
- ✓ Only varying component rainfall
- ✓ Uses well-accepted drought model

Satellite-based Rainfall Estimates



Each provides 10-day rainfall imagery at 10x10 km resolution across Africa from 1983:

- RFE2 from US NOAA (2000-present)
- ARC2 from US NOAA (1983-present)
- TAMSAT from Reading Uni. (1983-present)

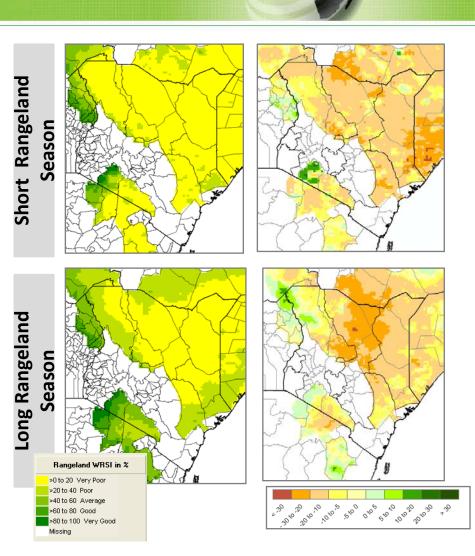
Pre-loaded archive, updated every 10 days automatically from FTP sites

Countries select the dataset during customization round

Why does ARC use satellite based rainfall data?

- ARC's primary ability is to disburse funds quickly, therefore ARC needs real-time rainfall data
- Rainfall data need to be objective and transparent, impossible to manipulate.
- Rainfall estimates are available for the whole continent, ensuring comparability across countries.
- Rainfall data need to be free of charge

Example Kenya

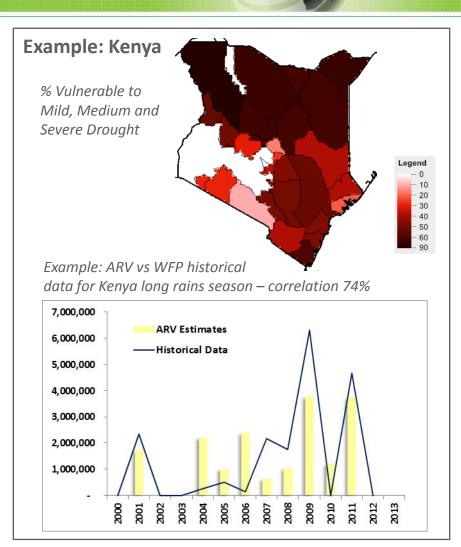

Drought Index: WRSI

Africa RiskView uses FAO's crop model, the Water Requirement Satisfaction Index, WRSI

- Calculates crop water requirement compared to water availability.
- Linearly related to yield
- Can be applied to crops and rangeland
- Updated every 10 days
- Simple water balance model used by most operational early warning systems in Africa

Drought defined when the WRSI falls below its normal benchmark in an area

 Countries set WRSI parameters and benchmarks that match their existing systems and correlate well to yields



Population Affected Estimates

The population is divided into drought risk categories (based on information extracted from household survey data)

If a mild, medium or severe drought occurs, ARV generates estimates of the people *directly* affected

Response Costs

Response cost = Population affected x response costs per person

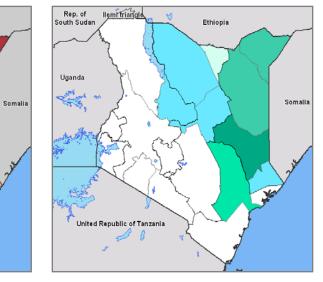
Population Affected

Ethiopia

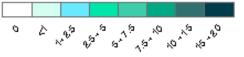
llemi triangle

United Republic of Tanzania

Estimated population affected (th)


The ap art of the as the arts of the

Rep. of South Sudan


Uganda

0

Response Costs

Estimated response costs (in million US\$)

Operations Plan

Kenya drought operational plan was approved by the ARC Governing Board in March 2014

KENYA DROUGHT OPERATIONS PLAN 2013-14

SUBMISSION TO THE AFRICAN RISK CAPACITY OCTOBER 2013

http://www.africanriskcapacity.org/countries/risk-pool-1

2014 Premium payments Pool 1.

Premium income for 2014 to be \$17.5 million for the five countries, six seasons for an insurance portfolio with a May 1st inception date:

- Kenya: USD 9 million Mauritania: USD 1.4m Mozambique: USD 0.5m
- Niger: USD 3m
 Senegal USD 3.6m

May	May	May	June	Jun	e Jur	e Ju	uly.	July	July	Aug	Aug		014 Sep	t Sept Se	ept	Oct	Oct	Oct	Nov	Nov	Nov	Dec	Dec	Dec	Jan	Jan	Jan	Feb	Feb	Feb	Mar	Mar		15 Apr	Apr	Apr	Ma	y May	y Ma	ay Jun	e Jun	ne Jur	e
									Alle	ER									1																								
									NIC	EK																																	
											S	ENEG	AL]																				
														RITANIA							1																						
													VIAU	RITANIA																													
																	KENY	YA SH	ORT	RAINS																							
																							MO	ZAMB	QUE																		
																																	K	ENYA	LONG	RAI	NS						

Recommendations

- High resolution imagery not suitable for drought monitoring on country/continent scale.
- Play. Make experimental products and automate early.
- Listen to feedback from end-users. More important than scientific acknowledgement.
- Be on the look-out for spin-offs. ARC spinoff: helping Ethiopian pastoralist farmers to find good grazing grounds using NDVI.