

Disaster preparedness and Disaster Response tools

Anthony Cintron, Juan M. Lavista Ferres, Shahrzad Gholami, Md Nasir, Anthony Ortiz, Caleb Robinson, Tina Sederholm, Siyu Yang

Al for Good Research Lab

Agenda

- Introduction to our team
- Deep Dive 1
 - Post-Disaster Building Damage Assessment using Satellite Data (*Netherland Red Cross* | 510 Global Initiative)
- Deep Dive 2
 - Dwelling type Classification and Risk Assessment for Disaster Vulnerability using Satellite Imagery (SEEDS)
- Questions and Discussions

Al for Humanitarian Action

Our \$40 million commitment focused on disaster response, refugees and displaced people, human rights, and needs of children

AI for Humanitarian Action

Post-Disaster Building Damage Assessment using Satellite Data

Shahrzad Gholami*, Siyu Yang*, Caleb Robinson*, Anthony Ortiz*, Fabian Salamo*, Anthony Cintron*, Juan M. Lavista Ferres*, Jacopo Margutti**

*Microsoft AI for Good **510 Global Initiative | Netherland Red Cross

Datasets Coverage & Damage Levels

- Disaster types and disasters represented in xBD dataset around the world
- Sourced from the Maxar/DigitalGlobe Open Data Program
- Targeted satellite imagery to be below a 0.8-meter ground sample distance
- 19 different natural disasters across 22,068 images of 1024x1024 and contains 850,736 building polygons
- Imagery covers a total of 45,361.79 sq. km.

Disaster Level	Structure Description
0 (No Damage)	Undisturbed. No sign of water, structural or shingle damage, or burn marks.
1 (Minor Damage)	Building partially burnt, water surrounding structure, volcanic flow nearby, roof elements missing, or visible cracks.
Z (Magor Diamage)	Partial wall or roof collapse, encroaching volcanic flow, or surrounded by water/mud.
3 (Destroyed)	Scorched, completely collapsed, partially/ completely covered with water/mud, or otherwise no longer present.

Study Objective: Build Damage Assessment Model

in disaster response agencies?

Task I: Building Segmentation Task II: Damage Level Classification

0.62

Harmonic mean

Labels

0.74

0.89

0.43

segmentation

Damage classification

4

0.84

0.56

Building damage visualizer - Jérémie, Haiti (azure.com)

D Predicted damage layer

Legend Minor damage Major damage Destroyed

Microsoft Al for Good - Building damage visualizer for the Haiti 2021 Earthquake Jerémie, Haiti Imagery: <u>Measr Open Data Program</u> Ucensed under <u>Creative Commons Attribution Non Commercial 4.0</u> Pre disaster imagery February 27th, 2021

Building damage visualizer - Les Cayes, Haiti (azure.com)

133523

C Predicted damage layer

Post disaster imagery

August 15th, 2021

Legend Minor damage Major damage Destroyed

Microsoft AI for Good - Building damage visualizer for the Haiti 2021 Earthquake Les Cayes, Haiti Imagery: <u>Maxar Quee Data Program</u> Licensed under <u>Creative Conversa Attribution New Commercial 4.0</u>

Londer 1 @ Care New West contribute

Successful Detection Examples in Haiti

pre-disaster

post-disaster

predictions

Louisiana Flood from Hurricane Ida: Barataria & Jean Lafitte

pre-disaster

post-disaster

AI for Humanitarian Action

Project Sunny Lives

Dwelling type Classification and Risk Assessment for Disaster Vulnerability using Satellite Imagery

Md Nasir, Microsoft Tina Sederholm , Microsoft Anshu Sharma, SEEDS Sundeep Reddy Mallu, Gramener Shubham Mishra, SEEDS Sumedh Rajan Ghatage, Gramener Juan M. Lavista Ferres , Microsoft

Al for Good Research Lab

Introduction

- Partnership with non-profit Sustainable Environment and Ecological Development Society (SEEDS) working towards building disaster resilience in lowincome areas
- 2 million houses lost every year in India, only to flood

Dwelling types are good indicator of vulnerability

- Roof type classification of dwellings indicate the construction material and resilience
- Satellite imagery-based approach for scalability

Determine disaster vulnerabilities in advance

Combining this information with weather warnings and forecasts, vulnerable communities can be identified prior to the disaster

Image source: The Guardian

Dataset

Satellite Imagery

- 50 cm resolution RGB data from Maxar partnership
- 8 areas of interest (AOIs) were identified by SEEDS from 2 regions in India

The coastal town of Puri

The city of Mumbai including Dharavi slum

(Left column): predicted label (Middle): ground truth (Right): input imagery

Impact

•

- **Short term:** can take necessary actions on at a community/neighborhood level
 - such as evacuation, allocation of resources
 - to minimize the loss and provide relief
 - Deployed for two cyclones last year
- **Long-term:** identify vulnerable regions and work towards risk reduction
 - by strengthening of buildings
 - improving water and sanitation management

Learn more about our work

Thank you.

Al for Good Research Lab

© Copyright Microsoft Corporation. All rights reserved.