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Two large tropical cyclones struck Taiwan in the summer of 2004 and landslides

triggered by these events caused not only casualties and housing damage but also

produced large volumes of sediment that entered rivers and reservoirs. For

reservoir and watershed management it is important to quickly identify the

location and areal extent of new landslides for coordinating mitigation efforts. In

this study, two automated methods, supervised and unsupervised classification of

10 m multi-spectral SPOT-5 imagery, were tested for their ability to identify and

map landslide areas before and after the two storm events. A slope map was

applied to mask roads, riverbeds and agricultural fields erroneously commis-

sioned as landslides. The automated classification results were compared with

manually delineated landslides using SPOT-5 supermode satellite imagery with a

resolution of 2.5 m. Statistical testing and spatial analysis of the mapping results

were performed. Finally, the results from all three methods were validated by

using 0.35 m orthophotographs. This paper reports the results and discusses the

salient differences between the automated and manual methods.

1. Introduction

Taiwan is an island, about 380 km long and 140 km wide, separated by the Strait of

Formosa from southeastern China. The island is prone to an average of four to five

tropical cyclones, also called typhoons, each year. These intense storms bring

torrential rains that trigger landslides in the mountain belt that runs north–south,

occupying almost two thirds of the island (figure 1). In the second half of the 20th

century, a number of hydro-electric dams were constructed in the forested mountain

areas across the island. Over the years, landslides have scoured hill slopes and acted

as major sources of both coarse and fine sediments in channels and rivers. These

sediments have been transported and deposited in dams and reservoirs, reducing

their storage capacity for drinking water and/or electricity production. A local

assessment indicated that between 8.8% and 9.7% of all sediment is trapped by

reservoirs annually (Hwang 1994). Studies have further shown that landslides

contribute to the majority of sediments that enter the reservoir, especially in well-

forested watersheds where soil erosion rates are relatively low (e.g. Borghuis and

Chiu 2005). This is why rapid and accurate identification of new landslides is of

great importance to support watershed management. A quick response can enable
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the timely removal of landslide deposits or application of protective measures for

preventing further downslope rock and soil transport.

Aerial photographs have long been used to interpret and delineate landslides. But

mapping landslides using aerial photographs is a tedious and time-consuming

process. In recent years, researchers have turned to satellite images as a data source

for mapping landslides using methods that range from visual interpretations to

semi-automatic approaches. Following this recent trend, the main objective of this

study is to test whether recent satellite imagery can be a source for accurate and

cost-efficient identification of landslides. For this purpose 10 m SPOT-5 multi-

spectral imagery and 2.5 m supermode imagery were obtained. The study involved

four main tasks. First, we tested the supervised and unsupervised classification

methods to identify landslides on the multi-spectral imagery. Second, we delineated

landslides manually from the supermode satellite images. Third, statistical tests and

spatial analysis were performed to evaluate and to better understand the differences

found in the landslide mapping results. Finally, by using a set of 0.35 m resolution

digital orthophotographs, two-thirds of all landslides mapped by the automated and

manual methods were validated. Findings from this study should be of interest to

landslide researchers as well as watershed management agencies.

2. Landslide mapping

2.1 Landslides

The term ‘landslide’ describes a downslope movement of a mass of soil and rock

material (Cruden 1991). Various landslide classifications by morphology, material,

mechanism of initiation and other criteria are available. In general landslide types

include rock falls, rock slides, earth flows, earth slides and debris flows. Landslides

Figure 1. Location of the study area in Taiwan.

1844 A. M. Borghuis et al.
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construction or a combination of these factors (Aleotti and Chowdhury 1999).

Morphologies typical of slope movements such as scarps, deposit zones, disturbed

vegetation and disturbed channels or roads provide visual cues that are important

for manually interpreting landslides on an aerial photograph or satellite image

(Dikau 1999).

2.2 Manual delineation from aerial photographs

Traditionally, aerial photographs are used to identify and delineate landslides and to

produce landslide inventory maps. With high details in aerial photographs, zones of

previous sliding activities can easily be identified by their characteristic scarps and

debris flow deposits. But use of aerial photographs for landslide mapping has

several disadvantages. First, aerial photographs cover relatively small areas and

many photographs are needed to cover a large watershed. Second, manual

delineation of landslides is a tedious and expensive job. For example, Liu and

Woing (1999) cited one study, in which 100 work-days were required to identify over

4000 landslides on stereo aerial photographs, manually delineate landslide

boundaries and add landslides to a GIS (geographical information system)

database. Third, clouds, especially in sub-tropical mountain areas, inevitably will

obscure part of the imagery. Finally, the recurrence interval of aerial photographs is

often irregular, especially for mountainous forest areas with little commercial value,

and, as the recurrence interval prolongs vegetation re-growth and man-made

protective covers can make it difficult or impossible to identify new landslides

(Korup 2004).

2.3 Previous satellite image based studies

Compared to aerial photographs, satellite images have two distinct advantages.

They usually have recurrence intervals of days. And, based on our experience,

obtaining cloud-free satellite imagery close to the storm event date is relatively easy

and can be done online, allowing a preview of images before acquiring them. It is

therefore no surprise that satellite images, especially those of high-resolution, have

replaced aerial photographs for mapping landslides in recent years. For example, the

Soil and Water Conservation Bureau of Taiwan has used SPOT-5 products to

compile landslide inventory maps for the past few years. However, few satellite-

based methods for automated landslide detection have been tested so far.

Petley et al. (2002) used Landsat 7 ETM + imagery to map landslides in upland

areas of Nepal and Bhutan. They found that the image classification missed more

than 75% of landslides detected by the ground mapping method. Major problems,

according to them, were the spatial resolution of Landsat 7 ETM + , the spectral

resolution, the shadowed slopes and the rugged terrain. Haeberlin et al. (2004)

reported that SPOT-5 products can be helpful for determining large, kilometre-sized

slope instabilities in Nicaragua but semi-automatic approaches based on image

radiometry does not seem appropriate for mapping landslides.

Nichols and Wong (2004) tested and validated a multi-temporal approach for

landslide change detection using SPOT imagery. They reported detection rates up to

70%. Because their study area was mostly uncultivated, the only changes in the

images were new landslides. They also found that 80% of landslides had trails no

wider than 10 m. The same paper presented a number of image fusion techniques

Landslide mapping 1845
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or better image results for detailed mapping and interpretation as traditional aerial

photographs. Dadson et al. (2004) used 20 m SPOT-4 satellite imagery and identified

20 000 soil and bedrock landslides within a total area of 150 km2 in central Taiwan.

They claimed that the 20 m resolution allowed landslides larger than 3600 m2

(363 pixels) to be mapped accurately. But omission of smaller landslides might have

caused significant underestimation of disturbed areas.

It becomes clear from previous studies that multi-spectral satellite images are

potentially useful for mapping landslides at the regional scale. However, the

spatial resolution has been a major problem. Recent medium- and high-resolution

multi-spectral scanners on platforms such as IKONOS, Quickbird and SPOT-5

appear to have filled this gap (Vohora and Donoghue 2004, Chadwick et al. 2005,

Rosin and Hervás 2005). In addition, the use of filters, masks and colour

composites can also assist in classifying landslides on satellite images (Petley et al.

2002, Haeberlin et al. 2004, Ramli and Petley 2006). But more empirical evidence

is needed, and it is important to continue testing automated methods on new

satellite image sources.

3. Data

3.1 Study area

The study area, measuring 115 km2 in size, is located in southern Taiwan in the

upstream part of the Tsengwen reservoir watershed (figure 1). The area consists of

two sub-watersheds with a common outlet after the confluence of the major draining

streams at the so-called Da-Bang dam, located just outside the study area on the

west side. More than 90% of the study area is covered by tropical forest vegetation,

with the remaining area occupied by small settlements and agricultural fields. One

major stream flows in the northeast to southwest direction, while two tributaries

join the main stream in the west, draining the east and southeastern parts of the

watershed. The topography is generally rugged, with elevations ranging from 765 m

to 2611 m and slope angles ranging from 0u to over 56u (figure 2). The 1 : 250 000

scale geological map shows the area is dominated by Late-Miocene sandstones,

while the central part of the study area features Middle-Miocene sandstones and

coal layer seams. Overlaying soils have a stony character. Field sampling shows that

soils are in most cases at least 0.40 m in depth. The top often consists of up to 0.05 m

thick organic material and a generally well developed A-horizon under bamboo and

dense mixed tropical forest stands.

3.2 Typhoons

Typhoon Mindulle passed by Taiwan from the south affecting the island for four

days (28 June–3 July). Typhoon Mindulle brought about 1182 mm of rain to the

study area, with a maximum intensity of 905 mm recorded over a 24-hour period

(CWB 2004a). Typhoon Aere (23–26 August) crossed the northern tip of the island

in an east–west direction, causing severe damage in terms of loss of life, property

and landslides. During typhoon Aere, 784 mm fell in the study area, with a

maximum intensity of 486 mm over 24 hours (CWB 2004b). Two other typhoons

(Kompasu and Rananim) also passed by Taiwan in the 2004 typhoon season

between Mindulle and Aere but did not bring any significant rain to the study area

(2.5 mm and 32 mm, respectively).

1846 A. M. Borghuis et al.
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3.3 Satellite images

SPOT-5 images were obtained to assess the extent of landslides in the study area

caused by typhoons Mindulle and Aere, respectively, in the summer of 2004. Three

images were selected, one before and one after each typhoon event, so that the

impact of each typhoon on the study area could be assessed. A 99% cloud-free image

on 12 April was selected to investigate the initial conditions before typhoons

Mindulle and Aere struck. The 10 July image was taken just seven days after

typhoon Mindulle left Taiwan, and a third image on 12 October showed the

conditions after typhoon Aere passed through northern Taiwan.

The SPOT-5 imagery consisted of two different modes for the same scene. The so-

called supermode produced detailed colour images using two parallel scanners, each

with a 5 m resolution. After processing, an interpolated image with a resolution of

2.5 m was derived. In addition, 10 m multi-spectral images of the same scene were

obtained for the automated classifications. The multi-spectral imagery consisted of

the green, red, near-infrared and short-wave infrared wavelength bands. The short-

wave infrared band had an original resolution of 20 m and was resampled to 10 m.

4. Methods

This study tested two automated techniques for landslide identification, supervised

and unsupervised classification, and manual delineation. Free and open-source

GRASS GIS was used for the automated classifications, while ESRI’s ArcGIS was

employed for overlay, area calculation, data conversion and geospatial data

management.

Figure 2. Elevation and slope map of the study area.

Landslide mapping 1847
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calculate the Normalized Difference Vegetation Index (NDVI) for each scene

(Lillesand et al. 2004). We used the NDVI to quickly find sparsely vegetated areas,

possibly caused by landslides (Liu et al. 2002). Dark grey or black areas with

negative grid cell values would indicate areas with sparse or no vegetation, such as

landslides, rivers, roads, towns and barren farmland. Contrasting light grey and

white areas would indicate healthy forest and vegetation. NDVI values ranged from

20.44 to 0.54 on 12 April, from 20.34 to 0.73 on 10 July and from 20.4 to 0.61 on

12 October. As one might expect, vegetation in early summer appeared greener than

in early spring, while the autumn image showed a slight decrease in overall

vegetation indices from early summer. The dry river floodplains, as well as roads

and towns, were clearly visible in all NDVI results. The NDVI results were used to

support the manual delineation by giving some directions as to where to search for

landslides in the 2.5 m supermode imagery.

4.1 Unsupervised classification

Using the unsupervised classification method, our first task was to find a number of

classes that could separate landslides from other land use types. All unsupervised

classifications were performed using a combination of all available wavelength

bands (bands 1, 2, 3 and 4) and by employing a maximum-likelihood classifier

(MLC) (Neteler and Mitasova 2004). By classifying the image into eight classes we

found that landslides could not be distinguished from dry riverbeds, roads and bare

farm fields, which apparently had spectral properties that were similar to landslide

areas. When we increased the number of classes to 32, the result was better than for

eight classes. However, we found that still no ‘pure’ landslide classes were created.

A solution to this problem was to filter out those areas that were not landslides.

Because many wrongly classified features were in reality farmland, roads or houses,

a method had to be found that could mask these features while not obscuring

landslide areas. It was decided to try an overlay of the unsupervised results with a

slope map of the study area. The idea was that most built-up areas, roads, farmland

and also riverbeds have relatively low slope angles, while landslides are mostly

associated with steep slopes (e.g. Chang and Slaymaker 2002). Further investigation

revealed a law ordered by the Soil and Water Conservation Bureau, forbidding all

construction or new farmland on slopes greater than 28u (SWCB 2003).

We calculated slopes from a digital elevation model (DEM) with a 40 m resolution

(standard DEM in Taiwan) and tested the 28u limit. At 28u, landslides were still

correctly classified, while barren farmland or roads, houses and dry riverbeds were

successfully excluded. A 25u slope mask would include too many road or farmland

cells while a 30u slope mask would exclude areas identified in the field as parts of

landslides. The result of experimentation convinced us to use a mask of all cells with

a slope of less than 28u to filter out non-landslide areas in an unsupervised

classification.

In addition to the slope filter, we also used a ‘noise filter’ to remove isolated small

groups of pixels or individual pixels that were classified as landslides but were too

small to possibly be landslides. In effect, this filter enforced a minimum (landslide)

mapping unit. We used a maximum of three adjacent pixels for the noise filter,

meaning that all areas less than 300 m2 and a length or width less than 30 m were

excluded from the classification result.

1848 A. M. Borghuis et al.
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In this study we decided to obtain training areas for four classes: rock (dry riverbed),

existing landslide, forest and urban area. For forest, a number of training areas were

used since forests appeared differently for various parts of the study area due to

shadows and different vegetation types. For landslides, the training areas consisted

of a large landslide and a small landslide that were visited in the field. For rock, bare

rocks in the river as well as rocks that could be seen in the image and confirmed in

the field were used. The largest town in the study area was chosen to be the training

area for the urban land use class. A MLC then used the spectral signatures of the

training areas to assign each cell in the image the class with the highest probability.

Similar to the unsupervised classification, the supervised classification also used a

28u slope mask and a noise filter of three pixels.

4.3 Manual classification

We used the SPOT-5 2.5 m supermode imagery for the manual delineation. The

2.5 m resolution enabled identification of features in the image such as single houses,

farm land, roads and landslides. First, an initial rough classification of areas and

features in each image was performed in order to identify farms, buildings, rock

cliffs and clouds, besides landslides. The aforementioned NDVI layer assisted in the

identification process. Rock cliffs could easily be distinguished from landslides since

they lacked the typical scar left by a mass movement. It was, however, more difficult

to identify small landslides, especially those along roads and streams. Subsequently,

all features that were identified as landslides were digitized on screen in a GIS

(Chang 2006).

4.4 Analysis of landslide area

We used the t-test to determine whether or not there were significant differences in

mean landslide areas generated by the three methods for the three image dates. In

addition, the area concordance measured how well landslide areas mapped by the

three methods overlapped. Expressed as a percentage, the area concordance is

calculated by: [(overlapped landslide area)/(total landslide area mapped by the

manual method)]*100, where the overlapped landslide area represents the

intersection of landslides from the manual method and the automated method(s).

The manually delineated landslide polygons were converted to 10 m raster cells for

the analysis.

The area concordance is based on landslide areas only. It is different from a

confusion matrix for image analysis, which in this case would be based on landslide

and non-landslide areas. Landslide areas as mapped by the three methods range

from only 0.34% to 1.80% of the total study area. Any quantitative measures derived

from a confusion matrix would therefore be strongly biased towards non-landslide

areas. This is why the area concordance was adopted for this study as a simple,

appropriate measure of the overlap of landslide areas.

4.5 Validation by orthophotographs

We used digital colour orthophotographs to validate landslides delineated by the

manual and automated methods from SPOT-5 products and to explain their

differences. These orthophotographs were compiled from stereo pairs of 1 : 5000

Landslide mapping 1849
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have a pixel size of 0.35 m and an estimated horizontal accuracy of 0.5 m.

The digital orthophotographs covered more than over 67% of all landslides that

were identified by any of the three methods. This large subset allowed us to find

landslides that were missed by the automated and manual methods (errors of

omission) and areas that were wrongly classified as landslides (errors of

commission). The checking was done by eye, and performed by two trained image

interpreters.

5. Results

5.1 Landslide areas

Figure 3 shows manually delineated landslides and the typical non-vegetated

features present in the study area such as river floodplains, towns, bedrock

outcrops or cliffs, farm fields and roads.

Tables 1–3 show the total landslide area and the descriptive statistics of individual

landslides delineated by the two automated classification techniques and the manual

delineation. Several trends are apparent in the tabulated monthly data. First, the

total landslide area delineated manually is smaller than those by the automated

classifications. Second, tables 1–3 show that the mean landslide area for the manual

method is larger than those for the automated methods. The results of t-tests are

presented in table 4. The difference in the landslide area means between the manual

and automated methods are significant, while the differences between the automated

methods are not. Third, the manual method records a much smaller number of

landslides than the two automated classifications. Fourth, the maximum area of

individual landslides is larger for the manual method and the unsupervised

classification than the supervised classification.

5.2 Area concordance

Table 5 lists measures of the area concordance of landslides as mapped by the

automated methods and the manual method. The table shows three types of overlay:

landslide areas from all three methods, between the supervised classification and the

manual delineation and between the unsupervised classification and the manual

delineation. As expected, the overlay of all three methods has the lowest area

concordance values. The overlay between the unsupervised classification method

and the manual method has the highest area concordance values, ranging from 53%

to 63%.

5.3 Validation

Orthophotographs were used for validating over 67% of all landslides delineated by

the manual method and those identified by the automated methods. The validation

of manual delineation results revealed no errors of commission for large landslides

but found many errors of omission for small landslides. In contrast, the validation

of the automated methods showed more errors of commission but only few errors of

omission. Erroneously commissioned areas by the automated methods were found

to be primarily stretches of roads, bare soil on farm fields and riverbeds.

Figure 4 illustrates differences between the unsupervised method and the manual

method. Figure 4(a) shows a series of small landslides along a stream channel. These

1850 A. M. Borghuis et al.
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small landslides were correctly identified by the automated method, as shown by the

black areas in figure 4(b), but were omitted by the manual method. Figure 4(c)

displays errors of commission made by the automated method; the small black areas

identified as landslides were in fact stretches of roads. Figure 4(d) shows general areas

Figure 3. Delineated landslides (white outline) in 2.5 m SPOT-5 imagery.

Table 1. Supervised classification (MLC) using all bands and slope and noise filters.

Date 12 April 2004 10 July 2004 12 October 2004

Statistics Total/Mean/Min/Max/SD Total/Mean/Min/Max/SD Total/Mean/Min/Max/SD
Area (ha) 61.8/0.11/0.06/3.64/0.29 197/0.14/0.06/7.67/0.39 103/0.18/0.06/6.98/0.48
No. of
landslides

540 1428 566

Landslide mapping 1851
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of concordance between the automated method (black areas) and the manual method

(white outlines). The landslide at the bottom of figure 4(d) also exhibits an important

difference between the methods. The manual method produced a single, enclosed

landslide whereas the automated method resulted in a fragmented landslide.

6. Discussion

An important finding of the study is that both the supervised and unsupervised

classification produced many more small landslides than the manual delineation.
This was further confirmed by the t-tests for all landslide areas. The differences in

landslide areas and numbers can be explained as follows. First, in the manual

delineation we connected all areas that appeared to belong to one single landslide,

leading to fewer and larger landslides. In contrast, the raster-based automated

classification methods identified landslides on a cell-by-cell basis. Large landslides

were therefore split into smaller fractions when, for example, patches of vegetation

were present on the landslide surface. Second, despite the use of a slope filter, parts

of farmland, stretches of roads or parts of riverbeds were still erroneously
commissioned as landslides, leading to a high number of small landslides (figure 5).

Because of the incorrect classification of roads and riverbeds, the automated

Table 2. Unsupervised classification (MLC) using all bands and slope and noise filters

Date 12 April 2004 10 July 2004 12 October 2004

Statistics Total/Mean/Min/Max/SD Total/Mean/Min/Max/SD Total/Mean/Min/Max/SD
Area (ha) 74.7/0.12/0.06/14.37/0.61 127/0.12/0.06/24.61/0.82 154/0.20/0.06/19.53/0.91
No. of
landslides

649 1104 758

Table 3. Manual delineation of landslides using SPOT-5 2.5 m supermode imagery.

Date 12 April 2004 10 July 2004 12 October 2004

Statistics Total/Mean/Min/Max/SD Total/Mean/Min/Max/SD Total/Mean/Min/Max/SD
Area (ha) 39.3/1.57/0.13/18.70/3.63 94.6/1.31/0.02/22.98/3.07 99.4/1.29/0.02/24.89/3.20
No. of
landslides

25 72 77

Table 4. Results of t-tests for differences of landslide area means.

Methods 12 April 2004 10 July 2004 12 October 2004

Supervised/Unsupervised p50.28 (df51182) p50.30 (df51174) p50.34 (df51310)
Unsupervised/Manual p50.03 (df5671) p50.00 (df52503) p50.04 (df5757)
Supervised/Manual p50.03 (df5557) p50.00 (df51471) p50.03 (df5577)

Table 5. Measures of landslide area concordance.

Overlay 12 April 2004 10 July 2004 12 October 2004

All three methods 14.3 20.2 37.6
Supervised/Manual 15.7 37.6 39.4
Unsupervised/Manual 58.6 53.3 63.1

1852 A. M. Borghuis et al.
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classification methods likely overestimated the number and areal extent of

landslides. Third, we found that the manual delineation of supermode 2.5 m

imagery proved not suitable for the identification of small landslides. As a rule,

landslides smaller than 400 m2 (868 or 64 pixels) could not be distinguished by eye

in the supermode colour images. However, towns, farms and clouds could be easily

identified.

The area concordance statistics show large differences between the supervised and

unsupervised classifications compared to the manual delineation. The supervised

classification result was especially poor (an area concordance of 16%) for the April

scene because of the absence of fresh landslides. We used two existing landslides,

which we visited in the field, as training areas. The first was a partly re-vegetated

landslide appearing very similar to areas where vegetation was still sparse in April.

The second was a large and scarcely vegetated landslide with exposed rock materials

that appeared to be spectrally similar to the sediment in the dry river floodplain. The

result was that many areas were wrongly commissioned as landslides in the April

scene.

The difference in the area concordance results between the two methods can be

further explained by examining maximum landslide areas in tables 1–3. Landslides

generated by the supervised classification are all relatively small and fragmented,

with maximum areas ranging from 3.48 ha to 7.67 ha, whereas landslides generated

by the unsupervised classification are much larger, with maximum areas ranging

from 14.37 ha to 24.61 ha, a range similar to that obtained by the manual method,

Figure 4. (a) Small landslides along a stream. (b) The landslides in (a) correctly identified by
the automated method. (c) Errors of commission by the automated method caused by roads.
(d) Area concordance between the manual and automated methods.

Landslide mapping 1853
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18.70 ha to 24.89 ha. The overlap of large landslide areas with the manual method

probably accounts for the higher area concordance for the unsupervised

classification.

The validation by 0.35 m resolution orthophotographs confirmed the errors of

omission and commission that were made by all three methods. Counter intuitively,

we found that the automated method using 10 m resolution multi-spectral images

was able to correctly identify many small landslides around 10 m wide that could not

be positively identified in the 2.5 m supermode imagery.

The application of a 28u slope mask to filter out non-vegetated features with

relatively low slopes that were not landslides was not fully successful. This can be

explained as follows. The slope mask had a resolution of 40 m; therefore, 10 m to

15 m wide roads, parts of riverbeds and parts of farm fields close to steep hill slopes

would still remain in the scene and be wrongly classified as landslides.

7. Conclusion

In this study we tested automated classification methods and manual delineation of

SPOT-5 products for mapping typhoon-triggered landslides. Unsupervised classi-

fication using all SPOT-5 wavelength bands combined with a slope mask produced a

63% area concordance with manual mapping results using 2.5 m supermode

imagery. Statistical tests revealed that the automated methods tended to produce

significantly smaller landslide areas when compared to the manual delineation

Figure 5. SPOT-5 supermode imagery and classification results from the automated and
manual methods for a select area for three different acquisition dates.
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7 results. Classification results were validated by 0.35 m orthophotographs and

showed many errors of omission by the manual delineation method for small

landslides. In contrast, the majority of errors made by the automated methods were

errors of commission that could be attributed to the presence of roads, riverbeds and

bare farm fields in the scene. When a higher resolution DEM becomes available, we

believe that these errors can be reduced to a minimum, thus enabling a cost and time

effective classification of landslides based on medium- and high-resolution multi-

spectral satellite imagery.
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