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As a geological hazard, landslides cause extensive property damage and

sometimes result in loss of life. Thus, it is necessary to assess areas that are

vulnerable to future landslide events to mitigate potential damage. For this

purpose, change detection analysis and a generalized additive model were applied

to investigate potential landslide occurrences within the Sacheoncheon area,

Korea. An unsupervised change detection analysis based on multi-temporal

object-based segmentation of high-resolution remote sensing data and thresh-

olding wad adopted to detect landslide-prone areas. Landslide susceptibility was

predicted on the basis of detected landslide areas and GIS-based spatial

databases. The generalized additive model, which can deal with categorical and

continuous data as well as model the continuous data as a nonlinear smoothing

function, was used for landslide susceptibility analysis. As a result, the

unsupervised change detection scheme was able to detect 83% of actual landslide

areas. The generalized additive model provided a superior predictive capability

compared with the traditional generalized linear model.

1. Introduction

In recent times, the occurrence and extent of damage to human settlements resulting

from geological hazards have been increasing. Even a small natural disaster can

impact heavily upon human settlements, and this situation will progressively worsen

in the future. As a geological hazard, landslides result in extensive damage to both

property and lives. An essential component of planning for future land use for
economic activity and the prediction of possible landslide zones is the identification

of those areas that are vulnerable to future landslides.

In such landslide susceptibility assessment, remote sensing can play a role in both

the generation of thematic maps related to landslide occurrences and the production

of a landslide inventory map. The normalized difference vegetation index (NDVI) or

lineament density maps generated from the processing of remote sensing data can be

input into landslide susceptibility analysis models. Landslide susceptibility models

are based on quantitative relationships between landslide areas and input spatial

data. To derive these relationships, it is important to detect areas of past landslide or
generate a landslide inventory map. Since most landslides tend to occur in mountain

areas, traditional field surveys are limited by inaccessibility and cost. In contrast,

remote sensing data can consistently provide periodic and regional information, and

landslide areas can be detected using multi-temporal remote sensing data acquired
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before and after landslide occurrences. Several studies have demonstrated the

potential use of remote sensing data in the detection of landslide areas (Yamaguchi

et al. 2003, Singhroy and Molch 2004, Nichol and Wong 2005). See Metternicht et

al. (2005) for a detailed discussion on remote sensing of landslides.

Recently available high-resolution data (e.g. a pixel resolution of 1 m or less) such

as IKONOS and QuickBird imagery can be used to detect small-scale landslides.

Despite the great potential of high-resolution remote sensing data, there remain

several operational issues. Until now, change detection analysis using high-

resolution remote sensing data has not been undertaken as it has been for mid-

resolution remote sensing data such as Landsat or SPOT. Although it is expected

that improved spatial resolution always leads to superior detection capability, an

increase in spectral variance associated with improved resolution may lead to

impaired spectral separability between landslides and other areas. Most landslides

are represented spatially as a single object consisting of scarp and deposit areas. If

the conventional pixel-based change detection approach is applied to the detection

of landslides, the results may sometimes be noisy. In addition, if the scarp and

deposit areas are separated, the conventional approach may erroneously detect two

distinct landslide areas. To overcome the above limitations of pixel-based analysis, it

is necessary to apply a specific change detection approach to high-resolution data.

As landslide occurrences are related to a large number of geomorphological and/

or environmental variables, multiple variables for landslide susceptibility should be

considered. If these geomorphological characteristics can be quantitatively related

to landslide occurrences, we can then identify those areas that are likely to be

affected by future landslides. Geographic information system (GIS) can be used

effectively to deal with and process the large bodies of spatial data related to

landslide occurrences. Until now, traditional GIS functionality was based on the

overlay analysis using weights determined subjectively by experts in the field. Such

an approach is severely affected by erroneous input layers, the ambiguous influence

effects of datasets, inappropriate user-defined database queries, and the fuzziness of

the datasets themselves. In addition, most commercially available GIS packages do

not provide information integration and are developed with insufficient mathema-

tical understanding of the data. Thus, insufficient consideration of geoscience

datasets may result in erroneous decision-making. To obtain the most reasonable

interpretations, it is therefore important to establish a systematic usage of spatial

data and methodologies that quantify and efficiently integrate spatial relationships.

Since the 1990s, many studies have been undertaken on quantitative landslide

susceptibility assessment linked with statistics or even artificial intelligence (Luzi and

Floriana 1996, Burton and Bathurst 1998, Guzzetti et al. 1999, Ercanoglu and

Gokceoglu 2002, Chung and Fabbri 2003). In particular, regression-based

approaches such as the generalized linear model or logistic regression have been

commonly used (Atkinson and Massari 1998, Dai et al. 2001, Lee 2005). Such an

approach can be used when a binary variable is used as a dependent variable and

both continuous and categorical variables are considered simultaneously. Areas of

known landslide occurrences are used to construct multivariate characteristics for

landslide susceptibility under the assumption that the dependent variable (i.e.

known landslide occurrence) is related to the independent variables (i.e. input spatial

data related to landslide occurrence) in a log-linear way, which is not always the

case. A generalized additive model is an extended version of the generalized linear

model that replaces the linear predictor with an additive one (Hastie and Tibshirani
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1990). Despite its great potential as an alternative to the generalized linear model,

the generalized additive model has seldom been applied to landslide susceptibility

assessment.

In the present paper, we undertake an unsupervised change detection analysis of

high-resolution remote sensing data and apply the generalized additive model to

map landslide susceptibility (figure 1). To overcome the limitations of the

conventional pixel-based approach, we present an object-based change detection

approach that can use spectral and spatial information from high-resolution data to

detect landslide areas. Landslide susceptibility is predicted on the basis of detected

landslide areas, spatial data relevant to landslide occurrence, and the generalized

additive model. We illustrate the proposed schemes via a case study of the

Sacheoncheon area, Gangwon Province, Korea.

2. Study area and dataset

The Sacheoncheon area, located in eastern Gangwon Province, Korea, experienced

serious landslide damage as a result of Typhoon Rusa and associated heavy rainfall

from 31 August to 1 September, 2002 [figure 2 (a))]. The maximum daily and hourly

rainfall amounts during the event were 944.5 mm and 113.5 mm, respectively,

exceeding the probable maximum precipitation of the area. Intense rainfall resulted

in substantial damage to property and human settlements, and triggered many

landslides in the area [figure 2 (b)].

To detect the locations of these landslides using change detection analysis, we

analyzed two high-resolution remote sensing datasets including IKONOS and

QuickBird imagery acquired on 14 October, 2001 and 20 July, 2003, respectively

[figures 3(a) and (b)]. For a quantitative assessment of landslide susceptibility, we

constructed a raster-based GIS spatial database including two categorical datasets

(forest type and soil drainage) and three continuous datasets (elevation, slope, and

aspect) [figures 3(c) and (d)]. Forest type and soil drainage data were extracted from

Figure 1. Schematic diagram of the processing flow used in this study.
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1 : 25 000-scale digital forest and soil maps, respectively. Elevation, slope and aspect

data were obtained from a 1 : 5000-scale digital topographic map of the study area.

Since the bedrock lithology of the study area mainly consists of granite, geology was

not considered. The study area covers approximately 11 km2 and consists of 746 by

588 pixels with a pixel size of 5 m65 m.

3. Methodology

3.1 Object-based change detection analysis

Of the various change detection methodologies, we use an unsupervised approach

that can easily identify the amount of change from a direct comparison of two multi-

temporal datasets. This approach provides information on change and non-change

but no information on the nature of the change (i.e. ‘from–to’ change information).
In the unsupervised approach, several important operational issues arise, including

radiometric calibration, precise geometric rectification, and the selection of

threshold values. These issues were investigated by applying an object-based change

detection analysis and the automatic selection of threshold values (figure 4).

Prior to change detection analysis, several preprocessing methods were applied
to the dataset. The IKONOS and QuickBird data were georeferenced and

orthorectified using the digital elevation model and second piecewise rectification.

Figure 2. (a) Location map with a relief map; (b) photographs of landslides within the study
area.
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Figure 3. (a) IKONOS imagery (14 October 2001); (b) Quickbird imagery (20 July 2003); (c)
slope map; (d) soil drainage map.
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To utilize fully both spatial and spectral information contained in the original data,

we carried out a pixel-level fusion of panchromatic and multispectral bands using a

PANSHARP module of the software PCI Geomatica. As a result, the preprocessed

images have four bands with a pixel resolution of 1 m. We used the multiple

regression model of Yamamoto et al. (2001) for both image normalization and

reduction of the spectral discrepancy caused by differences in acquisition. The

multiple regression model for IKONOS and QuickBird images was fitted to

represent spectral densities of the pixels in the IKONOS image by those in the

QuickBird image; the resulting images were used as inputs for change detection

analysis.

We used an object-based change detection analysis that can account for the

spatial context of pixels and that is insensitive to geometric errors compared with

Figure 3. (Continued.)
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conventional pixel-based analysis. We first extracted multi-temporal objects using

multi-temporal images. For object extraction, object-based segmentation was

applied using eCognition software. This multi-temporal segmentation enables

landslide areas to be expressed as a single object, with average spectral information

before and after occurrences included within the object. Within these objects, change

vector analysis was applied to obtain the extent of quantitative change.

In unsupervised change detection analysis, the amount of information on change

or nonchange is obtained to apply threshold values that discriminate areas of change

from areas that remained unchanged. However, the traditional approach cannot be

directly applied to the study area because of the presence of cultivated zones that

show changed conditions on the different acquisition dates. In this case, a single

threshold value is unable to discriminate changed from unchanged areas properly.

Considering these conditions, forest areas were extracted from the classification of

IKONOS imagery acquired prior to landslide occurrence. Change vector analysis

was then applied to those forest areas under the assumption that landslides in the

study area occurred within the forest areas. Thus, the changed areas would then

include landslides and newly constructed or destroyed facilities.

To select a suitable threshold value, we used the automatic selection method

proposed by Bruzzone and Prieto (2000). Under the assumption that the change

vector image can be modelled as Gaussian mixtures, this approach implements an

iterative estimation of the model parameters and then determines the threshold

values. We refer interested readers to Bruzzone and Prieto (2000) for a detailed

theoretical background to this approach.

Let X be a random variable in the change vector image. If the assumption of

Gaussian mixtures is adopted, the probability density function p(X) can be

represented as:

p Xð Þ~p vcð Þp X vcjð Þzp vncð Þp X vncjð Þ ð1Þ

where vc and vnc denote changed and non-changed classes, respectively. p(N) and

p(X|N) also denote the a priori and conditional probabilities of N class, respectively.

For two-component Gaussian mixtures, each conditional probability follows a

normal probability distribution, and the mean and standard deviation of the

distribution and the a priori probability of each component should be determined.

Figure 4. Flowchart for unsupervised object-based change detection analysis.
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To determine the model parameters of Gaussian mixtures from the dataset,

Bruzzone and Prieto (2000) proposed an expectation–maximization (EM) algorithm
that iteratively modifies the parameters of Gaussian mixtures to maximize the

likelihood of the data. The EM algorithm consists of two major steps: an

expectation step followed by a maximization step. The expectation step involves a

soft assignment of each observation to each Gaussian component model. The

maximization step then provides a new estimate of the parameters. These two steps

are iterated until convergence.

Once the Gaussian mixture–density model has been determined, the optimal

threshold value is determined using the Bayesian rule for minimum error (Fukunaga

1990). According to this rule, an optimal threshold value x is determined as the

appropriate solution of

p vcð Þp x vcjð Þ~p vncð Þp x vncjð Þ ð2Þ

Equation (2) guarantees the minimal misclassification error. Those pixels that have

the change vector value X that satisfies p(vc)p(x|vc).p(vnc)p(x|vnc) are classified

into vc, otherwise into vnc.

3.2 Generalized additive model

For landslide susceptibility mapping in the study area, we applied the generalized

linear and additive models that effectively quantify multivariate relationships

between a binary-type dependent variable and mixed types of independent variables.

The generalized linear and additive models adopted in this paper are logistic
regression models that model data with a binomial distribution.

Suppose a spatial database that includes m spatial sets related to landslide
occurrences for a specific landslide type in a study area A. Each layer of multiple

spatial data is regarded as evidence ei (i51, 2, ..., m) for the target proposition such

as ‘Each pixel p will be affected by future landslides’, denoted by Tp. The generalized

linear model provides a way of estimating a function of the mean response as a

linear combination of some set of predictors ei (i51, 2, ..., m):

g E Tp e1, e2, . . . , emj
� �� �

~g mð Þ~b0z
Xm

i~1

biei ð3Þ

where the function of the mean response, g(m), is termed the link function. b0 and bi

are the intercept and the coefficient estimate for ith predictor, respectively.

The primary restriction of a generalized linear model is the fact that the linear

predictor is still a linear function of the parameters in the model. The generalized

additive model extends the generalized linear model by fitting nonparametric

functions to estimate relationships between the response and the predictors (Hastie

and Tibshirani 1990). The nonparametric functions are generally estimated from the

data using smoothing operations.

The form of the generalized additive model is as follows

g E Tp e1, e2, � � � , emj
� �� �

~g mð Þ~b0z
Xm

i~1

fi eið Þ ð4Þ

where fi corresponds to the nonparametric function that describe the relationship

between the transformed mean response g(m) and the ith predictor.
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As with the generalized linear model, the probability of landslide occurrence

p(E(Tp|e1, e2, …, em)) is related to the linear predictor g(m) via the logit link function:

p E Tp e1, e2, � � � , emj
� �� �

~
eg mð Þ

1zeg mð Þ ð5Þ

The main difference between the generalized linear and additive models lies in the

way that continuous data are represented. Categorical data are represented as linear

relationships between the response and the predictors, whereas continuous data are

modeled as nonlinear and smooth. The response is modeled as the sum of smooth

functions in the predictors, where the smooth functions are estimated automatically

using smoothers (Hastie and Tibshirani 1990, Insightful Corporation 2001). Thus,

the difference between a generalized additive model-based landslide susceptibility

map and a generalized linear model-based one mainly results from the contribution

of the considered continuous data.

4. Results

4.1 Detection of landslide areas

Figure 5 shows the results of multi-temporal segmentation for part of the study area.

A scale parameter for the multi-temporal segmentation results was experimentally

adjusted by considering the scale of landslides that occur in the study area. As

shown in figure 5, a set of well-delineated changed and non-changed objects is

clearly highlighted. Landslide areas, including scarp and deposit areas, are expressed

as objects, and their spectral information is discriminated from surrounding areas.

We then carried out a change vector analysis and automatic selection of threshold

values within objects. A representative spectral mean value for IKONOS and

QuickBird images within objects was used for the change vector analysis. When

applying the EM algorithm to determine model parameters for the two-component

Gaussian mixtures, final convergence was achieved after seven iterations. The final

change detection results and actual landslide locations are shown in figure 6 (a). The

actual landslide locations were subsequently verified by field surveys. Figure 6 (b)

shows enlarged areas for visual comparison of changed areas, multi-temporal

segmentation, and field photographs.

The change detection analysis ultimately detected 270 changed objects. As a result

of field surveys and visual interpretation, we determined that the changed objects

included landslides, construction sites, newly generated forest roads, tombs and

misclassified forest areas. The number of actual landslide areas identified during

field surveys was 282. The number of identified changed objects is less than the

number of actual landslide areas because several small neighboring landslides were

expressed as a single object in our analysis. In change detection analysis, the

accuracy or detection capability can be expressed in terms of commission and

omission errors. In detecting the locations of past landslides, the omission error is

more important that the commission error. In our case, the number of missed

landslides was 49, and the landslide detection rate was 83%. The omission errors can

be attributed to factors such as intrinsic problems involved in unsupervised

classification and the choice of scale parameter in multi-temporal object

segmentation. There is a strong possibility that several landslides occurred in very

steep areas. Despite the high spatial resolution of IKONOS and QuickBird images,

it is difficult to identify objects in steep areas because of the limitations of imaging
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and projecting three-dimensional objects in two dimensions. After synthesizing the

results of change detection and field surveys, we prepared a landslide inventory map

of the study area. The geomorphologic characteristics of scarp and deposit areas

over the entire landslide body (i.e. scar) are distinctly different. It is therefore

necessary to define scarps as a new target pattern rather than use the entire scar area

of landslides. In this study, the topographically highest points of landslide scars are

selected as trigger areas for landslide susceptibility analysis.

4.2 Landslide susceptibility mapping and its validation

The refined landslide inventory map and raster-based GIS spatial database were

used as a dependent variable and independent or explanatory variables in landslide

susceptibility analysis, respectively. In addition to the generalized additive model,

the generalized linear model was also applied for comparison. After converting the

raster-based GIS spatial database to ASCII files, both the generalized linear and

additive models were applied using S-Plus software (Insightful Corporation 2001).

Figure 5. Multi-temporal segmentation results for subareas within the study area. The three
areas highlighted by circles are actual landslide areas.
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Spline functions were used as nonparametric smoothing operators in the generalized

additive model.

Table 1 shows the estimated regression coefficients and the partial t-test of their

significance for the generalized linear model. A simple indicator contrasts function

was used for linear combinations of the dummy variables in the representation of

categorical data. Broadleaf trees and poorly drained classes were used as reference

classes in the forest type and soil drainage maps, respectively. For categorical data,

regression coefficients and the means of t-test values were used as relative values

with respect to the reference class. From the results of the t-test values, the slope is

the optimal single variable in the generalized linear model.

In the case of generalized additive model, plots of the partial residuals of each

continuous variable can be used to assess the log-linear or nonlinear relationships

(figure 7). It is apparent in figure 7 that each continuous variable shows a clear

nonlinear relationship with respect to landslide occurrence. These results reveal that

Figure 6. (a) Results of change detection analysis. Changed objects and actual landslide
locations are denoted by red polygons and black dots, respectively. The background is a relief
map. Changed areas and a field photograph for subareas in figure 5 are shown in (b).
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the log-linear assumption in the generalized linear models is not appropriate in

modeling the relationships between landslide occurrence and the three continuous

variables. In the slope map, the probability of landslide occurrence shows a

quadratic relationship. Classes for which slope angle is higher than about 20u are

more likely to be affected by landslide occurrence. This finding indicates that most

landslides occurred in areas for which the slope angle is greater than 20u. In the

elevation map, the probability of landslide occurrence is higher for elevations

between 50 and 120 m; many landslides also occurred in areas higher than 200 m. As

most mountainous areas in the study region have elevations in this range, the

probability of landslide occurrence in such areas is high. In the aspect map, many

landslides occurred on north-, east-, northeast-, and southwest-facing hill slopes.

This result may reflect the differing number of sunshine hours experienced by

different aspects.

To visualize or express landslide susceptibility in terms of relative values over the

study area, we carried out a rank order transformation rather than directly

considering the probability values. The rank order transformation considers the

rank of predicted results rather than original values. This procedure enables us not

only to express the relative probability levels but also to compare directly the

prediction results of different prediction models. Another advantage of this

approach is that it minimizes the influence of extreme or erroneous values. Rank,

which is one of the most robust statistics, can be used to reduce this influence.

Using the rank order of probability values, we generated a final map wherein each

pixel contains the probability level measure mapped in a range from 0 to 200. This

procedure is adopted to illustrate the relative contributions throughout the study

area. First, all the pixel values were sorted in descending order, and the ordered pixel

values were classified by rank in 0.5% bins. This means that the lowest probability

value is mapped as 0 and the highest is mapped as 200. This mapping function is

similar to the process of histogram equalization. The rank-based presentation shows

approximately the same number of pixels at each probability level. Thus, for

example, to obtain the 10% probability areas, one can threshold the output map at

200690%. The pixels above this threshold should fall in the top 10% category. The

rank order indices expressed as a percentage unit constitute the landslide

Table 1. Summary of the results for the generalized linear model.

Layer Value t value

Intercept 213.966 20.109
Forest type Pine 6.440 0.015

Larch 2.414 0.017
Korea nut pine 0.891 0.012
Artificial pine 0.784 0.018
Cultivated 0.143 0.005
Etc. 0.269 0.013

Soil drainage Excessively drained 0.283 1.675
Moderately well drained 23.812 20.081
Well drained 0.803 0.068
Imperfectly drained 0.621 0.088
Etc. 21.485 20.088

Elevation 0.044 7.728
Slope 0.002 1.555
Aspect 20.001 21.651
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Figure 7. Partial residual plots of (a) slope, (b) elevation and (c) aspect.
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susceptibility map for the study area. We used this process to generate the final

landslide susceptibility maps, as shown in figure 8. In this figure, darker prediction

patterns indicate lower landslide susceptibility. Visually, the patterns of landslide

susceptibility are similar to those of the slope map, indicating that slope angle is the

primary control on landslide susceptibility in the study area.

Figure 8. Landslide susceptibility map based on (a) the generalized linear model and (b) the
generalized additive model.
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To evaluate and compare landslide susceptibility maps compiled using the

generalized linear and additive models shown in figure 8, we adopted a cross-

validation approach based on the random spatial partitioning of past landslides.

Past landslides were first randomly divided into two disjoint sets of equal size n/2,

where n is the total number of past landslides (i.e., 282 in this study). One subset was

used as the training dataset to construct probabilistic relationships between the

landslides and the input dataset, and then used to generate the landslide

susceptibility map. The predicted landslide susceptibility map based on these

relationships was then evaluated by comparing the map pattern of the predicted

susceptibility classes with the distribution of the other subset, assuming that the

landslides had not yet occurred. This procedure was repeated by changing the

training set to the validation set. Using this cross-validation approach, we obtained

the values of relative susceptibility at all landslide locations. These values were then

used to compute the cumulative proportion of landslide occurrences within each

susceptibility level. If a certain model has good predictive capabilities, the smallest

portion of the study area having high susceptibility levels should contain the highest

number of landslides. That is, the larger the area between the curve and the diagonal

line that is the case for random patterns, the better the predictive capability of the

model. A detailed description of validation procedures can be found in Chung and

Fabbri (2003).

The validation results are shown in figure 9. It is apparent from figure 9(a) that the

predictive capability of the generalized additive model is better than that of the

generalized linear model. The top 10% class contains approximately 32% of the

reference landslides in the generalized additive model, whereas the equivalent figure

for the generalized linear model is just 25%. The superior predictive capability of the

generalized additive model is observed over approximately 70% of the study area.

To provide a further useful quantitative measure for interpreting the curve in

figure 9 (a), slope values were computed for the curve for each 5% (figure 9 (b)).

These slope values represent the increment of the changes in prediction rate. A value

of 1 indicates that the prediction pattern in that class is random and thus has no

significance. The more the slope value exceeds 1, the stronger the significance of the

prediction result. For the cumulative portion curve to show reasonably significant

results, the slope value corresponding to the most susceptible class should be much

larger than that for the next-lower hazard class. That is, the most susceptible class

should include most of the landslides within it and occupy small sites throughout the

study area. The conclusion derived from visual and/or quantitative interpretations

of figure 9(a) is confirmed by the results shown in figure 9(b). The slope values for

the most susceptible 5% class and the difference with the next 10% class, as

computed from the generalized additive model, are both higher than equivalent

values for the generalized linear model. The slope values for the generalized additive

model also gradually decrease to the next-lowest susceptible level. In contrast, slope

values for the generalized linear model change in a very unstable pattern. For

example, the slope value of the top 5% is smaller that those for the next-lowest 10%

classes. This means that the predictive capability of the generalized linear model is

not significant for the prediction of future landslides.

The superiority of the generalized additive model over the generalized linear

model can be explained in terms of the representation of continuous data. As is

apparent in figure 7, the relationships between the continuous datasets and landslide

occurrences are nonlinear rather than log-linear. To fit the nonlinear relationships,
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we used the spline smoothing function in the generalized additive model. Previous

studies report that the slope map is the most important variable in terms of landslide

occurrence. In the present study, the slope map fitted using the nonlinear smoothing

function in the generalized additive model, rather than the simple log-linear function

in the generalized linear model, is the dominant control on the final landslide

susceptibility and thus provides superior predictive capabilities.

Figure 9. (a) Cumulative proportion of landslide occurrences with respect to landslide
susceptibility indices and (b) slope values of the upper 30% classes (5% intervals).
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5. Discussion and conclusions

To identify areas that are susceptible to future landslides, it is very important both

to detect past landslides accurately and to combine landslide occurrences and

quantitative relationships effectively between spatial data that represent the physical

conditions of landslides.

To tackle the above problems in landslide susceptibility analysis, the current

paper has presented advanced methodologies that formulate landslide susceptibility

analysis in terms of unsupervised object-based change detection and the generalized

additive model. Unlike traditional visual interpretations used to detect the locations

of past landslides, we used an unsupervised object-based change detection scheme

that is specific to the analysis of high-resolution remote sensing data. Experimental

results from a case study of the Sacheoncheon area, Korea, showed a reasonable

detection capability and confirmed the effectiveness of the presented methodology.

The generalized additive model, which is able to fit nonlinear relationships between

landslide occurrences and input spatial data, clearly outlines areas that are likely to

be affected by future landslides. This model includes a statistically appropriate

representation of information from different datasets and in particular an effective

framework for dealing with continuous data. By appropriate modeling of the

nonlinear relationships between landslide occurrences and continuous datasets for

the study area, the generalized additive model showed a superior predictive

capability to that of the generalized linear model that is widely used in landslide

susceptibility analysis.

In conclusion, the presented methodology effectively deals with high-resolution

remote sensing data and multiple spatial data, and can also be applied to landslide

susceptibility analysis in other areas. It would be expect that a number of the

findings of the present study can be extended to additional applications such as the

integration and interpretation stages of a decision-making process during change

detection analysis using high-resolution remote sensing data and tasks dealing with

GIS-based multiple spatial data.
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