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Landslide inventory mapping is an indispensable prerequisite for reliable hazard and risk analysis, and with
the increasing availability of very high resolution (VHR) remote sensing imagery the creation and updating of
such inventories on regular bases and directly after major events is becoming possible. The diversity of
landslide processes and spectral similarities of affected areas with other landscape elements pose major
challenges for automated image processing, and time-consuming manual image interpretation and field
surveys are still the most commonly applied mapping techniques. Taking advantage of recent advances in
object-oriented image analysis (OOA) andmachine learning algorithms, a supervised workflow is proposed in
this study to reduce manual labor and objectify the choice of significant object features and classification
thresholds. A sequence of image segmentation, feature selection, object classification and error balancing was
developed and tested on a variety of sample datasets (Quickbird, IKONOS, Geoeye-1, aerial photographs) of
four sites in the northern hemisphere recently affected by landslides (Haiti, Italy, China, France). Besides
object metrics, such as band ratios and slope, newly introduced topographically-guided texture measures
were found to enhance significantly the classification, and also feature selection revealed positive influence on
the overall performance. With an iterative procedure to examine the class-imbalance within the training
sample it was furthermore possible to compensate spurious effects of class-imbalance and class-overlap on
the balance of the error rates. Employing approximately 20% of the data for training, the proposed workflow
resulted in accuracies between 73% and 87% for the affected areas, and approximately balanced commission
and omission errors.
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1. Introduction

During the last century (1903–2004) approximately 16,000 people
were killed by landslides in Europe (Nadim et al., 2006), while in other
parts of the world even single events can have comparable
dimensions (20,000 in Peru, 1970, 29,000 in China, 2008)(Kjekstad
& Highland, 2009; Petley, 2009). The mean annual costs of landslides
in Italy, Austria, Switzerland and France are estimated between USD
1–5 billion for each of the countries (Kjekstad & Highland, 2009). The
assessment of associated risks, a prerequisite for disastermitigation, is
still a difficult task, with comprehensive landslide inventories being
the most commonly used source for quantitative landslide hazard and
risk assessment at regional scales (van Westen et al., 2006).

Landslide inventories have traditionally been prepared combining
the visual interpretation of aerial photographs and field work, which
to date remains the most frequently followed approach for the
elaboration of inventory maps in scientific studies and by adminis-
trative bodies (Hervás & Bobrowsky, 2009). Despite its time-
consuming and labor intensive nature, however, results still include
a large degree of subjectivity (Galli et al., 2008), and incur the risk of
omissions due to limited site access or aerial survey campaigns only
being mounted with some delay, when landslide traces are starting to
disappear.

Notable advances are being made in the detection of surface-
displacements from active (e.g. Cascini et al., 2010) and passive (e.g.
Debella-Gilo & Kääb, 2011) spaceborne sensors, allowing for detailed
monitoring of ground-deformations. Those techniques depend on a
coherent signal over time and are applicable for the mapping of slow
to extremely slow moving landslides (b13 m/month after Cruden &
Varnes, 1996) with a sparse vegetation cover. For the automated
mapping of dormant landslides under forest high-resolution surface
models from airborne laser scans provide new opportunities (e.g.
Booth et al., 2009). However, most hazardous landslides reach
considerable velocities and can typically only be mapped in a post-
failure stage, for which optical airborne and satellite images are the
commonly chosen data sources. Large events with thousands of
individual landslides such as recently in China (earthquake, 2008),
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Haiti (earthquake, 2010) and Brazil (rainfall, 2011) illustrate the
immense challenges posed for any non-automated mapping
approach.

The large fleet of existing and planned very high resolution (VHR)
satellites allows to record inexpensive imagery within days or even
hours after a given landslide event, and a number of studies have
already addressed the development of more automatic techniques for
landslide mapping with VHR images (Barlow et al., 2006; Borghuis
et al., 2007; Hervás & Rosin, 1996; Joyce et al., 2008; Lu et al., 2011;
Martha et al., 2010; Nichol &Wong, 2005; Rau et al., 2007;Whitworth
et al., 2005). Most of them targeted themapping of fresh features after
rapid slope failures, but a few works also demonstrated the potential
of optical data for the identification of slow-moving and dormant
landslides (Hervás & Rosin, 1996; Whitworth et al., 2005).

Proposed approaches may be generally classed into pixel-based
and object-based techniques, both including methods for the analysis
of monotemporal and multitemporal imagery, and often making use
of ancillary datasets such as digital elevation models (DEMs). Pixel-
based approaches include unsupervised (Borghuis et al., 2007) and
supervised classification (Joyce et al., 2008), as well as change
detection techniques (Hervás et al., 2003; Nichol & Wong, 2005;
Rau et al., 2007). Although those techniques consider to some extent
additional geometric constrains, such as minimum size, minimum
slope or non-rectangular shapes, they rely mainly on the spectral
signal of individual pixels. To exploit better the information content of
local pixel neighborhoods, Hervás and Rosin (1996) conducted a
systematic statistical evaluation of texture measures for landslide
mapping and found texture features after Haralick et al. (1973)
especially useful to highlight hummocky surfaces often associated
with landslides. Similarly, more recent studies concluded that the
integration of texture improves the image classification andmay yield
more accurate maps (Carr & Rathje, 2008; Whitworth et al., 2005).

In general there is an emerging agreement in the remote sensing
community that unsatisfactory results of per-pixel analysis can often
be attributed to the fact that geometric and contextual information
contained in the image is largely neglected (e.g. Blaschke, 2010). This
is especially true at higher resolutions, with a higher spectral variance
leading to increased intra-class variability and typically lower
classification accuracies (Woodcock & Strahler, 1987). Further
challenges arise due to the typically lower number of spectral bands
of modern VHR sensors and a higher sensitivity to co-registration
errors at higher resolutions. To address such issues object-oriented
analysis (OOA), also often referred to as object-based image analysis
(OBIA), became a widely spread concept for many geoscientific
studies to exploit geometric and contextual image information of
multi-source data (Blaschke, 2010).

Image segmentation and classification resemble human cognition
to some degree and have inspired a number of researchers to transfer
existing knowledge in machine executable rule sets. Such rule sets
have already been used for landslide mapping as a self-contained
classification scheme (Barlow et al., 2003), prior to supervised
classification (Barlow et al., 2006), for the post-processing of pixel-
based classification (Danneels et al., 2007), and for change detection
with multi-temporal images (Lu et al., 2011). Martha et al. (2010)
emphasized the importance of exploiting a range of features as widely
as possible, and developed a complex set of decision rules, including
36 particular thresholds, to detect and classify landslides of 5 different
types in the High Himalayas.

Expert rule sets are a very transparent solution for the exploitation
of domain knowledge but comprise two main limitations: (i) the
difficulty to decide which descriptive features are actually significant,
and (ii) their restricted generic applicability for different input data
types and under variable environmental conditions. Professional OOA
software solutions readily provide hundreds of potentially useful
object metrics, and further customized features enrich this great
variety. They allow the user high flexibility in setting up efficient
automated processes, but the selection of significant features remains
a challenging and time-consuming task.

Feature selection in high-dimensional datasets is an important
task in many fields such as bioinformatics (Saeys et al., 2007) or
hyperspectral remote sensing (e.g. Guo et al., 2008), and typically
targets a better performance of the algorithm classifying the data and/
or the investigation of causal relationships. A few object-oriented
studies already addressed statistical feature selection for land cover
mapping from VHR imagery (e.g. Laliberte & Rango, 2009; Van Coillie
et al., 2007), but no such efforts have been in the context of landslide
mapping. Little is known about the robustness, efficiency, scale-
dependency and generic applicability of the object-features and
thresholds proposed in individual studies. Considering the great
variety of landslide types, environmental conditions and available
imagery this largely prevents the transferability of proposed methods
and the development of operational workflows.

Machine learning algorithms, such as Random Forests (RF, Breiman,
2001), have demonstrated excellent performance for the analyses of
many complex remote sensing datasets (Gislason et al., 2006; Lawrence
et al., 2006;Watts et al., 2009). RF is based on ensembles of classification
trees and exhibits many desirable properties, such as high accuracy,
robustness against over-fitting the training data, and integrated
measures of variable importance (Diaz-Uriarte & Alvarez de Andres,
2006). However, like many other statistical learning techniques RF is
bias-prone in situations where the number of instances is distributed
unequally among the classes of interest. Under class-imbalance in fact
most classifiers tend to be biased in favor of the majority class, and vice
versamay underestimate the number of cases belonging to theminority
class (He & Garcia, 2009). Experiments on synthetic datasets suggest
that such biases are combined effects of class imbalance and an overlap
of the classes in feature space (e.g. Denil & Trappenberg, 2010). As
landslides typically cover only minor fractions of a given area, class-
imbalance is an inherent issue that affects the probabilistic assessments
of slope susceptibility (Van Den Eeckhaut et al., 2006), and may
complicate the application of machine learning algorithms for image-
based inventory mapping.

The objective of this study was to investigate the applicability and
performance of the RF learning algorithm in combination with OOA to
reduce the manual labor in landslide inventory mapping with VHR
images. Assuming that a sample-based framework combining both
techniques could be a flexible and efficient solution for many real-
world scenarios, VHR imagery recorded by state-of-the-art systems
(Geoeye-1, IKONOS, Quickbird, and airborne) at four different sites
was analyzed. To achieve an accurate and robust image classification it
was of particular interest to determine which image object metrics
efficiently distinguish landslide and non-landslide areas. Training and
testing samples were derived from existing landslide inventories, and
a RF-based feature selection method (Diaz-Uriarte & Alvarez de
Andres, 2006) was adopted to evaluate the capability of a broad set of
object metrics (color, texture, shape, topography) and their sensitivity
to changing scales of the image segmentation. Class-imbalance and
-overlap were expected to be critical points for the application of the
RF, and we further investigated if an iterative resampling scheme
could be used to design training sets that lead to a balance between
commission and omission errors. The efficiency of this approach was
evaluated at each test site with different segmentation scales and in
scenarios where 20% of the image objects would be available for
training.

2. Study sites and data

VHR images collected in the immediate aftermath of two recent
major earthquakes, as well as from two sites affected by non-seismic
landslides, were used in this study (Table 1). The areas are
characterized by a great diversity of environmental settings, landslide
processes and image acquisition conditions, and in this manner



Table 1
Overview of analyzed images and topographic data.

Test site Haiti Wenchuan Messina Barcelonnette

Sensor Geoeye-1 IKONOS Quickbird Aerial photograph
Spectral bands 4-band multispectral 4-band multispectral 4-band multispectral 3-band natural Color
Pixel size (multispectral/panchromatic) [m] 2/0.5 4/1 2.4/0.61 0.5/–
Sensor Tilt [°] 2.7 15.7 3.1 n.a.
Nominal collection azimuth [°] 343.8 62.7 343.3 n.a
Solar zenith angle [°] 45.6 19.2 45.6 –

Sun angle azimuth [°] 150.2 119.3 161.7 –

Date (days after the event) 13/01/2010 (1) 23/05/2008 (11) 10/8/2009 (8) 07/2004 (n.a.)
Test area [km²] 1 4 1 1
landslide affected areas [%] 9.6 15.1 19.6 8.7
DEM resolution (Source resolution) 10 m (1 m LiDAR DSM) 10 m (20 m contour lines) 10 m (1 m LiDAR DSM) 10 m (1 m IFSAR DSM)
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simulate realistic test cases with imagery that is typically available
shortly after major events.

2.1. Test site 1: Momance River — Haiti

On January 12, 2010 an earthquake with a moment magnitude of
7.0 struck Haiti. It was caused by the rupture of a previously unknown
system of a blind thrust fault (Hayes et al., 2010) and claimed
approximately 230,000 victims. Landslides caused extensive yet
unquantified damage at several locations (Eberhard et al., 2010),
and an increased frequency of slope failures and debris flows can be
expected during future rainfall events. The study site is located at the
Enriquillo fault line, which forms a tectogenetic valley followed by the
Momance River. The slopes are between 20 to 50° steep and show a
large number of shallow debris and rock slides. Most of the gentler
terrain sections are under agricultural use by hundreds of scattered
family farms. Due to erosion bare soils are exposed at several
locations, and the valley bottom is covered by fluvial gravel bars
and fresh landslide deposits. Geoeye-1 imagery was recorded one day
after the event.

2.2. Test site 2: Wenchuan town — China

The rupture of the Longmenshan fault system on May 12, 2008
(ML=8.0) triggered more than 60,000 individual slope failures
(Gorum et al., in press), and approximately 30,000 of the 80,000
casualties can be attributed to the impact of landslides (Tang et al.,
2010). The county capital, Wenchuan town, is located on both sides of
the Min River at 1330 m.a.s.l. and is surrounded by steep terrain with
average slopes of approximately 30°. The town and its surroundings
were seriously affected by a large number of mainly shallow
translational landslides, which are concentrated on the steepest
slopes in proximity to the drainage lines. Already before the event
those terrain units were rather sparsely vegetated and showed
bedrock outcrops at several locations. The main land cover types are
degraded mountain forest and terraced field crops, which extend to
slopes of up to 35°. Because the harvest was underway at the time of
the initial rupture, many fields were barren and showed similar
spectral characteristics as newly triggered landslides. IKONOS
imagery was acquired 11 days after the main shock.

2.3. Test site 3: Messina — Italy

On the 1st of October 2009 a series of debris flows struck several
catchments a few kilometers south of the city of Messina/Sicily. The
debris flows were triggered by extraordinarily intense rainfall in the
afternoon of that day, which had been preceded by prolonged intense
rainfall at the end of September. Thirty-one people were killed during
the event and the direct economic loss was estimated as almost US$
825 million (Civil-Protection-Sicily, 2010). The affected area com-
prises ten small and medium size catchments that rise from sea level
to about 700 m in the Peloritani Mountains. The present land cover
types comprise bare ground, crop-, shrub- and grassland, deciduous
forest and rural built-up areas. Most of the landslides were initiated as
shallow debris flows or slides at the upper slopes, and evolved into
rapid hyper-concentrated flows along their way through the drainage
network. The Quickbird imagery was recorded 7 days after the event.

2.4. Test site 4: Barcelonnette Basin — France

The Barcelonnette Basin is located in the South French Alps and
characterized by a mountain climate with Mediterranean influence.
The area is known for the large number of slow-moving active
landslides, and in the present study a small subset comprising the
Super Sauze active slow-moving mudslide (Malet, 2003) was
examined. The task here was mainly to distinguish the landslide
body from the surrounding badlands, and since the affected area is
one compact object this rather corresponds to an image segmentation
task. The available imagery is a natural color aerial photograph
recorded in summer 2004.

2.5. Landslide inventories

The reference inventories for Wenchuan, Messina and Barcelonn-
ette are based on field work and visual interpretation of aerial
photographs as well as VHR satellite imagery. As detailed field
investigations of the earthquake-induced landslides in Haiti have not
yet been completed, the corresponding inventory is based on the
interpretation of remote sensing products only. To minimize the risk
of miss-mapping we considered pre-and post-event VHR satellite
imagery from multiple sensors (IKONOS, Geoeye-1, WorldView-2)
and a post-event LiDAR DEM for the manual delineation of affected
areas.

3. Methods

At each test site we selected subsets (Fig. 1) that include landslides
and spectrally similar objects, such as river plains, urban areas, roads,
badlands and barren fields. A scalable segmentation algorithm
(Section 3.1) was applied on the images from each area, and a
comprehensive set of object metrics was calculated (Section 3.2).
These processing steps (Fig. 2 a) were performed with eCognition®
software, which implements nearest neighbor interpolation to
resample coarser image layers to the resolution of the finer
panchromatic layers. Subsequent to segmentation and metric calcu-
lation the landslide inventories compiled from field work and visual
image interpretation (Section 2.5) were used to create a sample
database with all objects assigned either as landslide objects (OLS) or
non-landslide objects (ONLS, Fig. 2 b). Each image object containing at
least 50% of landslide-affected area was labeled as OLS, and all others



Fig. 1. Analyzed areas at the different test sites. a) Momance River, Haiti (Momance river in blue), b) Wenchuan, China (Min River in blue), c) Messina, Italy, d) Barcelonnette basin,
France. White outlines indicate the landslide areas.
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as ONLS. Such a majority criterion was considered as the most logical
choice because it minimizes the overall amount of miss-labeled areas,
while retaining also marginal cases that may provide useful
information for the classifier training. To evaluate a comprehensive
set of object metrics (Table 2) for the discrimination of landslides and
unaffected areas, all OLS and an equally sized random sample of ONLS,
were used at all test sites and scales, respectively. They were
introduced in the RF-based approach for feature evaluation and
reduction (Fig. 2 c) proposed by Diaz-Uriarte and Alvarez de Andres
(2006), and described in greater detail in Section 3.3.1.

Non-relevant features were subsequently removed and the data
were split into training and testing sets (Fig. 2 d1). To account for
spurious effects of class-imbalance and class-overlap, an iterative
scheme for the adjustment of the training set was developed and
tested (Fig. 2 d2, Section 3.3.2.). The classification accuracy of the
approachwas finally assessed on a test set comprising 80% of all image
objects (Fig. 2 d3).

3.1. Image segmentation

Image segmentation generates the building blocks of OOA, and the
delineation quality of the target objects has a direct influence on the
accuracy of the subsequent image classification. Numerous image
segmentation algorithms have been developed in the last decades and
applied in remote sensing image analysis (Dey et al., 2010), all of them
aiming at the delineation of relatively homogeneous and meaningful
segments.

The multi-resolution image segmentation (MRIS) implemented in
eCognition® software is a frequently used algorithm in Earth science
studies (Blaschke, 2010). MRIS is a region-growing segmentation
algorithmwhich, starting from individual pixels, merges themost similar
adjacent regions, as long as the internal heterogeneity of the resulting
object does not exceed the user defined threshold scale factor (Benz et al.,
2004). Proposed statistical optimizationmethods (e.g. Drăguţ et al., 2010)
may allow an objectification of the choice of the scale parameter if the
targeted objects or processes exhibit a single operational scale. However,
slope failures and surrounding land cover elements feature several orders
ofmagnitudes involumeandarea, promptingother researchers to look for
automatic optimisation at multiple scales (Martha et al., in press).

To evaluate the impact of changing segmentation scales on the
feature space and class separability, image segmentation was
performed at 15 different scales (10, 15, 20, 25, 30, 35, 40, 45, 50,
55, 60, 70, 80, 90, and 100). The segmentation results depend on data
characteristics such as spatial resolution, the number of bands, image
quantization and the scene characteristics. The same scale factor does
not necessarily yield comparable objects in different scenes, but
increasing the scale factor for the segmentation of the same dataset
will generally lead to larger object sizes. Thus, it is possible to emulate
increasingly coarser representations of the same scene and compare
resulting trends among the tested sites.

The MRIS framework offers the possibility to assign different
weights to spectral bands and shape of segments. All multi-spectral
bands (blue, green, red, and near-infrared [NIR]) were equally
weighted with a value of one, while the panchromatic channel of
the satellite images was assigned a weight of four, allowing a balance
of multispectral and finer panchromatic data in the segmentation. The
shape criteria were weighted with zero and, consequently, not
considered in the segmentation.
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3.2. Calculation of image object metrics

This section provides an overview of features adopted from
previously studies (Table 2), and introduces a number of further
object metrics that were calculated subsequent to the image
segmentation (Fig. 2 a). Spectral features previously recommended
in the literature (Table 2) comprise band intensities, band ratios,
principal component (PC) transform and brightness, and respective
mean values were calculated per image object. The mean brightness
(B) was defined as the sum of the object means in the visible and
Table 2
Overview of features used to identify landslides in previous works and adopted for this st
Number in brackets indicates the number of features used with the aerial photographs.

Tested features

Spectral information Spectral bands
PC
Band ratios (blue/green, green/red, red/NIR)
Brightness
MaxDiff

Texture GLCMall dir. (Ent., Mean, Cor., Con., Stdv.)

Geometric Shape index, compactness, roundness
Length–width ratio

Auxiliary data Hillshade
Slope

Combined metrics Object direction/flow direction
GLCMflow.dir. (Ent., Mean, Cor., Con., Stdv.)
GLCM (Ent., Mean, Cor., Con., Stdv.)
panchromatic band (ci visð Þ) divided by the number of corresponding
bands (nvis).

B =
1
nvis

∑
nvis

i=1
ci visð Þ

The same bands were considered to calculate MaxDiff for each
object, defined as the absolute value of the difference of the minimum
udy. Most of the studies combined several attributes and are listed only exemplarily.

No. Case study

5 (3) (e.g. Nichol & Wong, 2005)
4 (3) (Forsythe & Wheate, 2003)
3 (2) (e.g. Rau et al., 2007)
1 (Martha et al., 2010)
1 This study
25 (15) (Carr & Rathje, 2008; Hervás & Rosin, 1996;

Martha et al., 2010; Whitworth et al., 2005)
3 (Moine et al., 2009)
1 (Martha et al., 2010; Martha et al., in press)
1 (Martha et al., 2010)
1 (Borghuis et al., 2007; Danneels et al., 2007)
1 (Martha et al., 2010; Martha et al., in press)
25 (15) This study
25 (15) This study

image of Fig.�2
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object mean (min ci visð Þ
� �

) and the maximum object mean (max ci visð Þ
� �

),
divided by the object brightness B.

MaxDiff =
min ci visð Þ

� �
−max ci visð Þ

� ����
���

B

To quantify surface textures a variety of derivatives of the Grey
Level Co-occurrence Matrix (GLCM) has been adopted in previous
landslide studies (Table 2). Considering their large computational
burden and frequent reports on strong correlations among several
GLCM derivatives (Hall-Beyer, 2007; Laliberte & Rango, 2009), a
subset of five texture measures was selected for this study. Those are
contrast (Con.), correlation (Cor.), entropy (Ent.), standard deviation
(Stdv.) and Mean. For a detailed formulation of the GLCM and
derivatives we refer to Haralick et al. (1973) and here only recall
that the co-occurrence frequencies of grey-levels are typically
counted in symmetric matrices for pixels neighboring directly at 0°
(N–S), 45° (NE–SW), 90° (E–W) or 135° (SW–NE), respectively.
Rotation-invariance of a GLCM derivative can be achieved by
calculating its mean or minimum value among all four directions
(e.g. Pesaresi et al., 2008), or by summing up the four directional
GLCMs (GLCMall dir.) before the calculation of the derivative. The latter
technique is implemented in eCognition (Trimble, 2011) and was
used in this study to calculate five rotation-invariant texturemeasures
per band directly for each image object.

Rotation-invariance is desirable for many applications but fails to
capture directional patterns in the grey-value distribution. Landslide-
affected surfaces often show downslope-directed texture patterns
that are potential diagnostic features to distinguish them from
surfaces with texture patterns oriented at the strike of the slope
(Fig. 3). In order to quantify such patterns better, additional
directional texture measures were derived from two directional
GLCMs; one computed along the hydrological flow direction (GLCMflow

dir.) and one perpendicular to it (GLCM flow dir.). For this purpose flow
direction rasters (Jenson & Domingue, 1988) were derived from the
respective DEMs (10 m resolution, Table 1) and their latticeswere
superimposed on the images. For each resulting 10×10 m grid cell
two directional GLCMswere calculated according to the direction (and
Fig. 3. Exemplary comparison between the rotation-invariant and topographically-guide
panchromatic channel. White arrows indicate the hydrological flow direction within the m
GLCMflow dir. Cor. tend to be lower and values of GLCM flow dir. Cor. tend to be higher. Hence, th
flow direction (e.g. fields, streets).
the normal) indicated in the flow direction raster. Fig. 3 shows this
exemplarily for GLCM Correlation, where the flow direction in each
squared cell is aligned at 45°, and the two directional GLCMs
consequently consider the grey-levels of pixels neighboring at 45°
(GLCMflow dir.Cor.) or 135° (GLCM flow dir.Cor.), respectively.

Ratio features (GLCM) were subsequently calculated for each
squared cell simply as the quotient of the texture measures computed
in flow direction and their counterparts computed in the perpendic-
ular direction. Contrast, correlation, entropy, standard deviation and
Mean from GLCMflow dir. and their respective GLCM ratios are also
referred to as topographically-guided texture measures. They were
computed on all image bands in a 10×10 m grid and finally converted
into raster layers with a pixel size of 10 m. This corresponds to 10
additional layers per band, where each image object (Section 3.1)
obtains the mean layer value within its extent. Together with the
texture measures from GLCMall dir. and a number of object metrics
characterizing mean spectral values, shape and topographic metrics, a
total of 96 and 62 features per image object were calculated for the
satellite imagery and aerial photograph, respectively (Table 2).
3.3. Random Forests

Since the fundamental works on ensemble decision trees (e.g.
Breiman, 2001), Random Forests (RF) have already provided
promising results in fields such as genomics (Diaz-Uriarte & Alvarez
de Andres, 2006), ecology (Cutler et al., 2007) and remote sensing
(Lawrence et al., 2006; Watts et al., 2009).

Small changes in the training data induce a high variance in single
classification trees and often lead to rather low classification accuracies
(Breiman, 1996). The underlying idea of RFs is to growmultiple decision
trees on random subsets of the training data and related variables. For
the classification of previously unseen data, RFs take advantage of the
high variance among individual trees, letting each tree vote for the class
membership, and assigning the respective class according to the
majority of the votes. Such ensembles demonstrate robust and accurate
performance on complex datasetswith little need for fine-tuning and in
the presence of many noisy variables. Furthermore, integrated pro-
cedures for variable assessment and selection, and freely available high-
d GLCM Cor. at the Messina test site. The texture measures are calculated on the
easured cells. For linear structures along the flow direction (debris flows) values of

eir ratio (GLCMCor.) is typically lower for linear structures aligned perpendicular to the
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quality software implementations, make RFs an interesting tool to be
combinedwithOOA. In thisworkweextensivelyused therandomForest
package (Liaw, 2010) and its extension for variable selection varSelRF
(Diaz-Uriarte, 2010) implemented in the R statistical programming
environment (R-Development-Core-Team, 2009).

3.3.1. Evaluation and selection of object metrics
As a starting point we were interested in object metrics that are

actually helpful to distinguish landslides from other image objects,
and in understanding how their performances depends on the scale of
the image segmentation. For this purpose a RF–based variable
importance measure was used to evaluate the object metrics at each
test site with 15 different segmentation scales (10–100). RF offers a
number of internal measures to estimate the importance of employed
variables for the accuracy of a given classification. The properties of
those measures have been intensively studied in recent years, and the
so-called permutation importance is considered a computationally
tractable choice for the screening of large datasets (Nicodemus et al.,
2010). The permutation importance, subsequently termed variable
importance (VI), is calculated as follows.

The original training data are resampled randomly (with replace-
ment) to create a training set (trainn, Fig. 2 c) and build a classification
tree. Considering a total number ofm extracted object-features (Fig. 2
a) at each tree node a subset

ffiffiffiffiffi
m

p
features is randomly selected and

tested for the best split. Approximately one third of the instances are
left out of the training set and remain as out-of-bag sample (OOBn,
Fig. 2 c) that can be used to assess the classification accuracy of the
tree. The importance of a feature mj for the correct classification is
estimated by permuting the feature values within the OOBn sample
and calculating the difference of prediction accuracies before and after
the perturbation. The VI of the variable mj (VIj, Fig. 2 c) results from
averaging the permutation importance of mj over a large number of
trees (N=5000, Fig. 2 c). In the present study it provided a measure
for the utility of the different objectmetrics to distinguish betweenOLS
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Fig. 4. Feature selection histories at the four test sites shown exemplarily for 5 of the 15 segm
number of selected variables. Black dot: Model with the smallest OOB error and number of
Boxplots indicate the variability of the number of selected features among all 15 segmenta
and ONLS. In order to give equal weight to both classes, at each test site
all OLS and an equal number of randomly sampled ONLS were taken
into account. VIs were calculated for all variables at the 15 different
segmentation scales (Section 3.1), where the overall number of
sample objects varied between a few hundred at the coarsest scale
and more than 60,000 at the finest scale.

Diaz-Uriarte and Alvarez de Andres (2006) proposed to compute
the VI from a large RF (N=5000) to obtain an initial variable ranking
and then proceed with an iterative backward elimination of the least
important variables. In each iteration the least important 20% of the
features are dropped, a new RF (N=2000) is trained with the
remaining feature set, and the OOB sample is used to assess its miss-
classification rate (OOB error). The final features set is selected
according to the RF that produces the lowest OOB error (Fig. 4). In the
present study this procedure was used to determine the set of object
metrics that were used for the construction of the final RF classifiers
(Fig. 2 d1–3).

3.3.2. Balancing of error rates and accuracy assessment
At all four test sites landslides covered only minor fractions of the

scene (Table 1). This is a typical situation leading to an imbalance
between OLS and ONLS, and potentially introduces a bias of the
classification towards the over-represented non-affected area. Pre-
liminary test runs adopting naturally imbalanced training sets indeed
demonstrated serious underestimation of the landslide class, suggest-
ing the presence of the class-imbalance problem. Such biases are
undesirable in any manual or automated landslide mapping, because
an over- or underestimation of the affected areas would generally lead
to a respective over- or underestimation of the associated hazards and
risks.

Numerous methods to account for such effects have been proposed
in the context of different statistical learning techniques. For logistic
regression they may involve prior corrections and weighting methods
(King & Zeng, 2001) or asymptotical coefficient estimates for infinite
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class imbalance (Owen, 2007). Many approaches have also been
developed for nonparametric learning algorithms such as RF, and may
be grouped into resampling, cost-sensitive learning and kernelmethods
(He & Garcia, 2009). None of the methods proposed so far provides a
universal advantage in all situations, but it has been demonstrated that
an undersampling of themajority class is a beneficiary strategy inmany
different setups (Blagus & Lusa, 2010; Burez & Van den Poel, 2009). The
sampling of a balanced training set might in some situations be
sufficient to compensate class-imbalance when using RF (e.g. Fusaro
et al., 2009), but the optimal class distribution will generally depend on
the specific method and studied case (Burez & Van den Poel, 2009).

For the analysis of class imbalance and the final accuracy
assessment only the previously selected object metrics were used.
20% of each dataset were sampled randomly for training (Tr20, Fig. 2
d1–2) and the remaining 80% were used as test set (Te80, Fig. 2 d3). To
estimate the class ratio in the training sample that leads to a balance of
commission and omission errors an iterative procedure was imple-
mented and tested, where Tr20 was split repeatedly into subsets for
training (trainsub) and testing (testsub, Fig. 2 d2). The parameter βi was
defined as the ratio of OLS and ONLS in the current trainsub, and changed
systematically to approximate a target value βn yielding a balance
between user's and producer's accuracy on the testsub. In each
iteration 20% of the OLS and βi-fold number of ONLS were sampled
randomly from Tr20 to train a RF (N=500) and assess the
classification accuracies on the remainder testsub (Fig. 2 d2). The
procedure started from a balanced class distribution (βi=1) and in
each step βi increased by 0.1 (Fig. 2 d2). The underlying assumption
was that the estimated βn could be applied to adjust the class-balance
for the entire training set Tr20, and would also yield balanced user's
and producer's accuracies in the classification of the actual test set
Te80.

For each βi the procedure was repeated ten times using replicates
of trainsub and testsub randomly sampled from Tr20. Mean error rates
and their standard deviations were calculated from ten runs, and in
cases where the observed variance in the resulting learning curves
were too high for the determination of a unique βn the number of
random replicates was increased (Section 4.3.1).

To assess the accuracy of the described RF framework, RFs
(N=500) were trained with βn-adjusted subsets of Tr20, and applied
on the remainder 80% test sample (Te80, Fig. 2 d3). At each test site the
sample balancing and accuracy assessments were performed exem-
plarily at a fine, medium and small segmentation scale (10, 30, and
70), and compared to reveal the effects of the segmentation on the
user's, producer's and overall accuracies.

4. Results and discussion

4.1. Effects of scale on variable importance and selection

In none of the examined cases the OOB error reduced if more than
77 object metrics were introduced, and on average only about one
third of the pre-selected metrics were detected as useful. In most
cases the OOB error remained rather stable or increased if all variables
were used. Especially at the test sites Haiti and Barcelonnette many of
the object metrics provided only minor further enhancements. This is
reflected by flat parts of the respective curves in Fig. 4, where slight
changes of the object characteristics can have a stronger impact on the
position of the OOB error minima, which was the criterion for the
model selection. Consequently, among all segmentation scales there is
a high variability in the observed overall number of selected features
(boxplots Fig. 4), which coincides with those flat parts of the curves.
Larger segmentation scales generally yield fewer sample objects, and
consequently the standard error of the OOB error estimate increased
(Fig. 4). It should be considered that in situations where the number
of samples becomes much smaller than the number of features, the
feature selection method can deteriorate strongly (Diaz-Uriarte &
Alvarez de Andres, 2006; Yu et al., 2006). However, this was not an
issue in the present study because even at the largest segmentation
scales the number of sample objects was at least twice the number of
features.

Selecting the model with the lowest OOB error is a rather
conservative strategy that may retain some redundant and partially
correlated variables. However, it was suitable for the present study in
order to retain all useful features and targeting a maximal predictive
accuracy. For applications where the smallest set of features with
causal relationships is important (e.g. Diaz-Uriarte & Alvarez de
Andres, 2006) a further reduction might be desirable, but no further
enhancements of the predictive accuracy can be expected.

Although the absolute number of selected object metrics strongly
depended on the particular test site and segmentation scale, some
features emerged as significant in most cases and should be further
highlighted. Unsurprisingly, metrics related to spectral information
resulted as the most important ones for all test cases and scales
(Table 3). The band ratios and PC that depict the contrast between
vegetated and non-vegetated areas ranked with a particularly high
variable importance (VI). Object means of the slope and hillshade
layers significantly reduced the error rates, but in most cases their
relative importance decreased with larger segmentation scales
(Fig. 5). Shape metrics displayed a rather contrary behavior (Fig. 6),
and generally contributed little to the reduction of the error rates.
Only for larger segmentation scales at Wenchuan and Messina, where
the segments more closely approached the elongated shape of the
landslides, shape metrics were selected by the selection procedure.
They have been reported as useful after initial spectral classification
steps (Martha et al., 2010; van der Werff & van der Meer, 2008), but
provide little additional information within the tested sample-based
framework.

However, the VI ranks of the most important spectral and textural
metrics exhibited low variability among the different segmentation
scales (σ in Table 3) and were not subject to a persistent trend. The
topographically-guided GLCM Con., Cor. and Ent. helped to reduce the
OOB error at all tested sites and largely outperformed the rotation-
invariant GLCMs. Furthermore, the topographically-guided GLCM Con.
was apparently more efficient when derived from the higher
resolution panchromatic channels. Both rotation-invariant and topo-
graphically-guided versions of GLCM Mean and Stdv. were frequently
included in the selected models, but the rotation-invariant versions
were in most cases ranked higher, indicating that the topographic
control did not enhance the significance of GLCM Mean and Stdv.
Although GLCMs have been previously adopted for landslide mapping
(e.g. Martha et al., 2010) the proposed topographic control on their
calculation provides significant enhancement (Fig. 4), andmakes such
object metrics potentially useful for the automated mapping of
various geomorphological processes.

Although the optimal choice of the texture measures depends to a
certain degree on the application, it is interesting to note that Clausi
(2002) highlighted Con., Cor. and Ent. as particularly useful GLCM
derivatives for the recognition of sea ice, and Laliberte and Rango
(2009) concluded that Con., Ent. and Stdv. are the most suitable
texture measures for rangeland mapping.

4.2. Effects of the feature reduction on the predictive accuracy

The OOB errors reported during the feature selection process
(Fig. 4) are not suitable to assess the predictive accuracies of the
models because (i) in a real case only a fraction of the OLS would be
available for training, (ii) the set of optimal features may differ among
subpopulations (Diaz-Uriarte & Alvarez de Andres, 2006), and (iii) the
overall OOB error does not inform about commission and omission
errors.

Those facts motivated a further experiment in which the training
sets included only 20% of all OLS (number of OLS in Table 4) and an



Table 3
The 20 object metrics with the highest average variable importance rank among all 15 tested scales and at each respective test site. The number of scales at which the variable has
been selected (nsel), and the standard deviation of the rank among all 15 scales (σrank), are provided as indicators for the stability of the variable importance.

Messina Haiti Wenchuan Barcelonnette

Feature nsel/σrank Feature nsel/σrank Feature nsel/σrank Feature nsel/σrank

Red/NIR 15/0.0 Red/NIR 15/0.0 Red/NIR 15/0.0 Blue/Green 15/0.0
NIR 15/0.2 Slope 15/0.2 PC 2 15/0.0 PC 2 15/0.0
PC 1 15/0.4 Green/red 15/0.4 Red 15/0.5 Max. Diff. 15/1.0
Max. Diff. 15/1.2 Red 15/1.2 Green/red 15/1.0 Blue 15/0.8
GLCMflow.dir. Con. PAN 15/1.6 PC 1 15/1.6 Blue 15/0.5 PC 3 15/1.8
GLCMflow.dir. Cor. PAN 15/2.2 Blue 14/2.2 Blue/green 15/1.0 Slope 15/2.6
Blue/Green 15/3.9 Blue/green 15/3.9 Green 15/0.6 Hillshade 15/1.4
GLCM Cor. PAN 15/2.4 Green 14/2.4 PC 1 15/1.1 PC 1 9/2.9
GLCM Con. PAN 15/3.0 PC 2 14/3.0 Brightness 15/1.0 GLCMflow.dir. Con. Blue 9/2.4
GLCM Cor. Red 15/4.4 PAN 14/4.4 Slope 15/2.8 Brightness 9/2.1
GLCM Cor. Green 15/4.3 GLCMflow.dir. Con. PAN 15/4.3 PAN 15/1.9 Green/red 8/2.5
Blue 15/6.8 NIR 13/6.8 GLCM Con. PAN 15/1.3 GLCMflow.dir. Con. Red 9/3.4
Slope 15/4.4 Hillshade 12/4.4 GLCM Cor. Green 13/2.7 GLCMflow.dir. Cor. Blue 7/2.4
GLCM Cor. blue 15/4.9 GLCMflow.dir. Cor. PAN 13/4.9 GLCM Cor. blue 14/3.0 GLCMflow.dir. Con. Green 8/3.3
GLCM Con. blue 15/3.8 Max. Diff. 14/3.8 GLCM Con. blue 13/2.9 GLCMflow.dir. Con. red 9/3.4
PC 2 14/7.8 Brightness 13/7.8 GLCM Cor. red 12/4.0 Green 6/2.8
GLCM Con. red 15/3.9 GLCM Con. PAN 12/3.9 Max. Diff. 14/4.0 GLCMflow.dir. Con. green 7/2.8
GLCMflow.dir. Cor. blue 15/3.9 PC 3 11/3.9 GLCMflow.dir. Cor. PAN 13/2.4 Red 7/2.2
GLCMflow.dir. Con. blue 15/5.1 GLCM Cor. PAN 10/5.1 NIR 10/8.5 GLCM Con. blue 5/5.4
GLCM Con. green 15/4.7 GLCMflow.dir. Ent. blue 9/4.7 GLCM Con. green 11/3.7 GLCMflow.dir. Ent. blue 4/2.5
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equal number ONLS, which were randomly sampled from the entire
population. The training sets consequently comprised between 3%
(Barcelonnette) and 11% (Wenchuan) of the datasets, while the
classification accuracies were assessed on the remaining test sets in
terms of correctly classified objects.

RFs (N=500) were trained and tested using once all object
features and once only the previously selected feature subsets
(Section 4.2). As expected the F-measures, which are the harmonic
means of user's and producer's accuracies, indicated a generally lower
predictive power than the OOB errors, but also enhanced accuracies if
only the previously selected object metrics were used (Fig. 7).
Especially for the cases Messina and Barcelonnette, with rather low
overall accuracies, the feature reduction enhanced the F-measures by
up to 5%.

More importantly, the test revealed that a balanced training
sample did not provide balanced user's and producer's accuracies, and
the RF overestimated the landslide area in all cases (Fig. 7). It could be
argued that for hazardous processes such as landslide an over-
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Fig. 5. Relationships between the VI-ranks of slope and hillshade and the segmentation
scales. Linear regression lines fitting the data series show the overall trends, and their
significance was tested at pb0.05 level.
detection might be easier to accept than omission. However,
uncertainties in landslide inventories propagate forward into suscep-
tibility assessment (e.g. Galli et al., 2008), and a high error of
commission would lead to unrealistic overestimates of the associated
hazard and risks. Under the assumption that in a real case it might be
an acceptable additional labor to provide further ONLS samples, the
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Fig. 6. Dependency of the variable importance of shape-metrics on the segmentation
scale for the different test sites. Especially with small scale factors (b25) the
segmentation did not generate landslide objects and non-landslide objects with
distinguishable shapes. Only the length–width ratio (b, between scale 30 and 80) and
the shape index (c, scaleN55) had some impact on the accuracy.



Table 4
Final accuracy assessment for all test sites at three exemplary segmentation scales. Accuracies show the average performance of RFs (N=500), trained with 20% of the OLS and
βn−fold amount of ONLS, applied to the test set Te80.βo is the original class-ratio of the entire population. The mean accuracies and their standard deviations were calculated over
50 randomly resampled replicates of Tr20. The best results for each test site are indicated with bold numbers.

Scale βn(βo) User's
accuracy
[%]

Producer's
accuracy
[%]

Farea [%] Fobj [%] βn-adjusted Tr20

OLS ONLS % of all objects

Haiti 10 3.0 (5.8) 88.8±0.1 85.7±0.2 87.1±0.1 89.7±0.1 4512 13536 11.7
30 2.3 (4.2) 82.8±1.2 87.1±0.9 84.9±0.7 88.3±0.3 564 1297 12.8
70 2.6 (4.0) 88.5±1.1 72.4±1.3 79.6±0.7 88.5±0.5 149 387 14.3

Wenchuan 10 2.7 (3.4) 81.3±0.1 81.1±0.1 81.2±0.1 80.5±0.1 6535 17645 17.0
30 2.5 (3.0) 81.2±0.4 77.1±0.5 0.791±0.2 80.3±0.2 570 1425 17.4
70 2.0 (2.6) 77.7±0.9 75.3±1.1 76.5±0.6 79.9±0.6 125 250 16.5

Messina 10 1.8 (4.2) 72.9±0.3 74.6±0.2 73.7±0.1 73.0±0.1 6135 11043 10.8
30 1.9 (4.1) 69.0±1.2 60.9±0.9 64.7±0.4 59.2±0.4 663 1260 11.3
70 1.9 (3.7) 64.3±2.0 59.8±1.3 62.0±0.8 60.5±1.1 125 238 11.9

Barcelonnette 10 4.7 (9.5) 77.8±1.0 78.0±0.5 77.9±0.4 76.5±0.2 1810 8507 10.8
30 5.5 (11.5) 74.7±2.1 75.9±1.8 75.2±1.0 67.4±0.8 237 1304 10.1
70 4.9 (12.1) 63.3±5.6 88.6±2.3 73.3±3.5 65.3±2.7 46 226 8.9
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next section of this paper examines a procedure to balance user's and
producer's accuracy.

4.3. Accuracy assessment

The balancing of under- and over-detection and the final accuracy
assessment (Fig. 2 d1–3) were performed at three exemplarily selected
scales (10, 30, and 70) with the previously selected features and in a
scenario where 20% of the data would be available for training. The
datasets were split (Fig. 2 d1) into a training subset (Tr20), used for the
estimation of the class balance and the classifier construction, and a
testing subset for the final accuracy estimate (Te80).

4.3.1. Estimates of βn from the training samples (Tr20)
For all cases we observed a strong over-prediction of landslide areas

if a class-balanced training sample was employed. The over-prediction
problem was more pronounced for Messina and Barcelonnette, where
already visual examination of the images suggested a higher class-
overlap than in the two other areas. In controlled experiments such a
behavior of classifiers has been explained by a higher density of positive
examples in the class-overlap region (e.g. García et al., 2007).

Nevertheless, the iterative increase of βi described in Section 3.3.2
(Fig. 2 d1), which corresponds to a relative increase of ONLS in the
training sample (trainsub), was an efficient strategy to adjust the
balance of user's and producer's accuracies in the test sets (testsub). At
Scale
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all test sites the estimated ratios of βn (Fig. 8) resembled solutions that
were a trade-off between the natural class-distribution (Table 4) and
a completely balanced sample. The highest βn estimates were
obtained for the Barcelonnette dataset, where also the over prediction
problem was most prominent.

Larger segmentation scales generally lead to a smaller number of
image objects, and the 20% benchmark for the proportion of training
data consequently translated into a reduced number of training samples
over constant areas. Fig. 8 shows that the reduced number of sample
objects resulted in an increasingly large variability in the test set
accuracies, and yielded larger uncertainties in the estimation ofβn. It can
be demonstrated that in such cases an increased number of random
replications for each βi still led to smoother converging curves with one
unique crossing (Fig. 8). However, it should also be stressed that the
estimation of βn still only provides an intelligent guess on the design of
the training sample for the classification of “unknown” image objects.
The efficiency of theestimatedβn, to generate anRFwithbalanceduser's
and producer's accuracies was examined for the test set Te80 as
described in the final section of this paper.

4.3.2. Estimation of the accuracy on the test set (Te80)
The majority class (ONLS) in the training sample (Tr20) was under-

sampled according to the estimated ratio βn. A RF (N=500) was
constructed from the βn-adjusted Tr20 and applied to the remainder
test set Te80 to assess the efficiency of the βn estimate and the overall
user’s accuracy
producer’s accuracy
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accuracy (Fig. 2 d3). The accuracy was assessed in terms of objects
(Table 4, Fobj) and, to provide a final accuracy estimate for the entire
approach, furthermore by comparing the classified areas with the
landslides and non-landslide areas in the manually elaborated
inventories (Table 4, user's accuracy, producer's accuracy, Farea).
Each test was repeated with 50 βn-adjusted randomly sampled
replicates of Tr20. The means and standard deviations of the achieved
accuracies were calculated from the 50 runs and are displayed in
Table 4. Although it did not solve the problem entirely, the strategy
provided a significantly better balance between user's and producer's
accuracies than could be achieved with the natural class distribution
or an ad hoc balanced training sample (Fig. 7).

The accuracies in terms of correctly predicted area generally
decreased for larger segmentation scales. At the test sites Haiti and
Wenchuan this must be attributed to an increasing misfit between
segmented object boundaries and the reference inventory leading to
greater impurities within mixed objects. This means that the
misclassified area increased due to a stronger generalization of the
segments with a larger scale factor, the predictive accuracy of the RF
(expressed by Fobj, Table 4) remained nearly constant among the
different scales.

Conversely, for Messina and Barcelonnette Fobj was consistently
lower than Farea (Table 4), and the classifier performance decreased
significantly with larger scale factors. The comparatively higher areal
accuracy can be explained by the fact that the average size of correctly
classified objects was greater than those of misclassified objects.
Spectral confusion and hence the importance of additional textural
and topographic features was higher for the classification of the
datasets from Barcelonnette and Messina (Table 3, Fig. 4). Leaving
such features unconsidered during the segmentation may contribute
to a higher class-overlap and a consequently lower Fobj at larger scales.

The general observations for theMessina test site confirmoncemore
that omission is an especially likely error for themappingof debrisflows
(Barlow et al., 2006; Lu et al., 2011), due to a high probability of
occlusions in the local topography and beneath the remaining
vegetation. At the Barcelonnette site most of the spectrally very similar
badlands (Fig. 1 d)were successfully distinguished (Fig. 9 d) through the
combination of spectral, textural and morphological features. Spatial
clustering of missed areas at the crown and the toe of the landslide
(Fig. 1 d, Fig. 9 d) indicates that such a landslide complex might be still
better treated as a multi-class problem.

In summary, the RF classifier provided relatively high accuracies of
up to 87% for the test sites Haiti and Wenchuan, while in the case of
Messina the best model reached an accuracy of 73%. Those figures are
in a similar range as the results of other recent studies on landslide
mapping from optical imagery (Barlow et al., 2006; Lu et al., 2011;
Martha et al., 2010). Though the quantities of employed samples are
not always explicitly mentioned (Barlow et al., 2006; Nichol & Wong,
2005), all proposed solutions depend on the availability of some sort
of training data. Once the samples are provided, the framework



Fig. 9. Results with a segmentation scale of 10, after feature selection and balancing of the error rates as indicated in Table 4 at a, Haiti b, Wenchuan c, Messina and d, Barcelonnette.
Correctly classified areas include the samples used for training.
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presented in this paper has the potential to run fully automated with
different image types, and liberates the user from the selection of
appropriate features and thresholds. At each of the four test sites a
medium resolution DEM, one VHR resolution image, and the reported
numbers of training objects were sufficient for an efficient perfor-
mance of the RF classifiers. In most practical situations such kind of
data will be available, and the described algorithms may provide a
generic approach to map the overall affected area more efficiently
before site and data specific tasks, such as the classification of
landslide types (Barlow et al., 2006; Martha et al., 2010), are targeted.
In situations where more data (e.g. pre-event imagery) are available
the proposed framework is suitable to accommodate a large variety of
additional datasets and object metrics, which may be used to further
increase the mapping accuracies.

In order to differentiate individual landslides and provide map
products with less dispersed class distributions (Fig. 9) the current
architecture still needs enhancements. This is closely related to the
observed fact that high-level features such as shape are better
exploited on larger scales (Section 4.1). The design of a hierarchical
algorithm that robustly and efficiently incorporates sample data and
relevant features in the classification, and delineation of image objects
among a number of different scales, remains a major challenge, and
with potential benefits for many remote sensing applications.

It also has to be noted that at this point we only explored the
technical aspects of the supervised framework in relatively small test
areas. A detailed analysis of the impact of sample quality and quantity
provided by different users and over larger areas was beyond the
scope of the present study, while research in this direction is certainly
desirable before an operational use of the technique.

5. Conclusions

Previously proposed methods for object-oriented mapping of
landslides fromVHR images are highly reliant onmanual thresholding
and a subjective selection of suitable features, making it difficult to
adapt them to new locations and datasets. To overcome such issues
this study investigated the use of image segmentation and the
Random Forest framework for feature selection and image classifica-
tion. A variety of VHR remote sensing images and different landslide
processes was analyzed with the RF data-mining technique to
evaluate useful image object metrics, the influence of the segmenta-
tion scale, and the consequences of class-imbalance.

Although the optimal set of object metrics varies considerably
from case to case, a number of spectral, topographic, and textural
features are generally useful. Rotation-invariant and topographically-
guided GLCMs provide complementary information to distinguish
affected from non-affected areas, while topographically-guided GLCM
derivatives introduced in this paper provide more significant
enhancements. They also appear potentially useful for the automated
mapping of other geomorphological processes such as gully erosion
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(Shruthi et al., in press) or fluvial sediments. The range of potentially
useful object metrics for landslide mapping and other applications
seems still not fully exploited, and data mining techniques such as RF
are valuable tools to ease feature selection for machine learning, or to
guide experts during the elaboration of knowledge-driven rule sets.
Our results indicate that feature reduction leads to an improved image
classification, but also that not all significant features can be fully
exploited with one particular segmentation scale.

Class-imbalance and class-overlap caused severely imbalanced
error rates at all test sites. An iterative scheme to estimate a
compensating class balance for the training data was found to
enhance substantially the balance of user's and producer's accuracies.
In the presented setup, accuracies between 73% and 87% were
achieved when 20% of the total area was provided for training.

In the short term further enhancements are certainly possible
through the integration of ancillary datasets such as pre-event
imagery or the exploration of additional object metrics. More research
is needed to optimize the segmentation process, which at present is
based on spectral information solely. An initial sample-based estimate
of the variable importance might thereby be an interesting tool to
decide which further layers should be included in the segmentation.
The processing time for a small test area can be streamlined to a few
hours on a standard desktop PC, while for larger areas the RFs can
easily be implemented for parallel processing, and the scale factor
may provide an interesting parameter to trade between accuracy and
processing time.

Acknowledgments

The work described in this paper was supported by the project
SafeLand “Living with landslide risk in Europe: Assessment, effects of
global change, and risk management strategies” under Grant
Agreement No. 226479 in the 7th Framework Programme of the
European Commission. This support is gratefully acknowledged.

References

Barlow, J., Franklin, S., & Martin, Y. (2006). High spatial resolution satellite imagery,
DEM derivatives, and image segmentation for the detection of mass wasting
processes. Photogrammetric Engineering and Remote Sensing, 72, 687–692.

Barlow, J., Martin, Y., & Franklin, S. E. (2003). Detecting translational landslide scars
using segmentation of Landsat ETM+and DEM data in the northern Cascade
Mountains, British Columbia. Canadian Journal of Remote Sensing, 29, 510–517.

Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-
resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready
information. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239–258.

Blagus, R., & Lusa, L. (2010). Class prediction for high-dimensional class-imbalanced
data. BMC Bioinformatics, 11, 523.

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of
Photogrammetry and Remote Sensing, 65, 2–16.

Booth, A. M., Roering, J. J., & Perron, J. T. (2009). Automated landslide mapping using
spectral analysis and high-resolution topographic data: Puget Sound lowlands,
Washington, and Portland Hills, Oregon. Geomorphology, 109, 132–147.

Borghuis, A. M., Chang, K., & Lee, H. Y. (2007). Comparison between automated and
manual mapping of typhoon-triggered landslides from SPOT-5 imagery. Interna-
tional Journal of Remote Sensing, 28, 1843–1856.

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24, 123–140.
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.
Burez, J., & Van den Poel, D. (2009). Handling class imbalance in customer churn

prediction. Expert Systems with Applications, 36, 4626–4636.
Carr, L., & Rathje, E. (2008). The use of remote sensing to identify landslides caused by

the 2004 Niigata-ken Chuetsu earthquake in Japan. 6th International Workshop on
Remote Sensing for Disaster Management Applications. Pavia, Italy.

Cascini, L., Fornaro, G., & Peduto, D. (2010). Advanced low- and full-resolution DInSAR
map generation for slow-moving landslide analysis at different scales. Engineering
Geology, 112, 29–42.

Civil-Protection-Sicily (2010). Landslide and mud food emergency Messina province,
Itlay, October 1st 2009. In A.f.a.f.t.E.U.S. Fund (Ed.), Regione Siciliana — Presidenza,
Dipartimento dellla Protezione Civile (pp. 83).

Clausi, D. A. (2002). An analysis of co-occurrence texture statistics as a function of grey
level quantization. Canadian Journal of Remote Sensing, 28, 45–62.

Cruden, D. M., & Varnes, D. J. (1996). Landslides types and processes. In A. K. Turner &
R.L. Schuster (Eds.), Landslides: Investigation and Mitigation (pp. 36–75).
Transportation Research Board, National Academy of Sciences: Washington D.C.
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J.
(2007). Random Forest for classification in ecology. Ecology, 88, 2783–2792.

Danneels, G., Pirard, E., & Havenith, H. -B. (2007). Automatic landslide detection from
remote sensing images using supervised classification methods. Geoscience and
Remote Sensing Symposium. Barcelona. Spain: IGARSS.

Debella-Gilo, M., & Kääb, A. (2011). Sub-pixel precision image matching for measuring
surface displacements on mass movements using normalized cross-correlation.
Remote Sensing of Environment, 115, 130–142.

Denil, M., & Trappenberg, T. (2010). Overlap versus imbalance. In A. Farzindar & V. Kešelj
(Eds.), Advances in Artificial Intelligence (pp. 220–231). Heidelberg: Springer Berlin.

Dey, V., Zhang, Y., & Zhong, M. (2010). A review on image segmentation techniques
with remote sensing perspective. In W. Wagner & B. Székely (Eds.), ISPRS TC VII
Symposium — 100 Years ISPRS (pp. 31–42). Vienna, Austria: IAPRS.

Diaz-Uriarte, R. (2010). varSelRF: Variable selection using random forests. R package
version 0.7-2.

Diaz-Uriarte, R., & Alvarez de Andres, S. (2006). Gene selection and classification of
microarray data using random forest. BMC Bioinformatics, 7, 3.
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