Terms by letter

All terms | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

tropical storm

Tropical storms generally form in the eastern portion of tropical oceans and track westward. Hurricanes, typhoons, and willy-willies all start out as weak low pressure areas that form over warm tropical waters (e.g., surface water temperature of at least 80 degrees F). Initially, winds and cloud formations over the warm tropical waters are minimal. Both intensify with time. Formation of tropical storms also requires a significant Coriolis effect to induce proper spin in the wind formation. As the storm begins to organize itself into a coherent pattern, it will experience increased activity and intensity.

When a storm develops a clearly recognizable pattern, it is referred to as a tropical depression. When wind speeds reach 35 knots (40.3 mph), it is called a tropical storm and is given a name. When wind speed equals or exceeds 74 mph, the storm is called a hurricane. In the western Pacific, a hurricane is referred to as a typhoon. In waters around Australia it is called a cyclone or willy-willy.

Hurricanes intensify when moving over areas of increased water temperatures, and weaken over colder water surfaces. Upper atmosphere wind shear (different wind direction and speeds at different elevations) will frequently prevent or slow intensification of tropical storms by 'spreading out' the storm horizontally and preventing the formation of strong updrafts of warm, humid air. Movement over a land-mass will weaken hurricane winds but will result in large-scale rain that can result in large-scale flooding. When encountering a strong frontal system (such as a polar front) the hurricane will curve and track along the leading edge of the front or become implanted in it.

Satellite infrared imagery can identify surface water temperatures that will foster tropical storm development. Source: NASA (http://earthobservatory.nasa.gov/Glossary)