Mass Movement

Sentinel-1 radar coverage from before and after the 1 April 2017 mudslide in Mocoa, Colombia. Triggered by heavy rain, the landslide caused greatest movement (red) on top of a mountain. It then pushed mud down across the city of Mocoa (green) and crossed the nearby river. The Sentinel-1-derived data product (from scans on 20 March and 1 April) has been overlaid onto a Sentinel-1 radar image. Image: Modified Copernicus Sentinel data (2017), processed by I. Parcharidis, Harokopio University of Athens.

Definition

Mass movements can be defined as as any type of downslope movement of earth materials, such as sediment, soil and rock material. Mass movements are processes of erosion, transport and accumulation of material that occur on both gentle and steep slopes mainly owing to gravitational forces (IRDR Glossary).

These movements are generally associated with other disasters such as earthquakes, floods, thunderstorms and heavy rainstorm. They can be also associated with manmade hazards like construction roads, buildings, structures, infrastructure facilities.

 

Facts and figures

Mass movements occur based on several factors and causes differ depending on different regions. Mass movements are affected by the slope gradient, climate, rock type and structure, physical setting and geological and geomorphological outlines (Advances in Geosciences).

Mass-wasting events come in many shapes, sizes and speeds. Typically, the steeper the angle of a slope, the faster will be the down-slope movement of rock and sediment.  Also, water can play a significant role in mass wasting, sometimes acting as the key component to a mass-wasting event, or serving as a lubricant within a mass of sediment and rock, enabling it to travel faster and further than it would otherwise.

 

One type of mass wasting can evolve into another type of mass wasting as the body of sediment/rock moves down a slope. This can make it difficult to classify a single event as being one type of mass wasting or another (Department of Geological Sciences, California State University).

A simple classification of the different types of mass wasting can be:

  • Falls  (rock fall and rock avalanche)        
  • Slides  (rock slide, landslide and slump)      
  • Flows  (rock avalanche, debris flow, earth flow and creep).

Related content on the Knowledge Portal

Noticias

Tropical cyclone Fani over the eastern coast of India on 2 May 2019. Image: NASA.

According to the latest issue of an annual disaster statistics report, floods were the deadliest type of disasters in 2019, followed by extreme temperature, while storms affected the highest number of people. Published by the Centre for Research on the Epidemiology of Disasters (CRED), “Natural disasters 2019 - Now is the time to not give up” draws on data recorded in the Emergency Events Database (EM-DAT), which saw the addition of 396 disasters that affected a total of 95 million and caused $103 billion in economic losses around the world. 

Accounting for 40 per cent of disaster events, Asia suffered the highest impact with 45 per cent of deaths and 74 per cent of total affected. India, which saw cyclone Fani cause destruction in 2019, was the country most affected... read more

Publishing date: 20/08/2020
Image: GFZ German Research Centre for Geosciences.

On 22 December 2018 a large chunk of the Anak Krakatau volcanic island collapsed into the ocean, causing a tsunami that swept across Indonesia’s Sunda Strait. Because tsunami early warning systems are exclusively equipped to detect tsunamis that are generated by earthquakes, this volcanic collapse-caused tsunami took place without a warning. In the coastal regions of Java and Sumatra, where people were struck off guard, the tsunami killed 400 people and injured many more.

A recent research study published in Nature Communications and led by the German Research Centre for Geosciences (GFZ) has detected deformations in Anak Krakatau leading up to the tsunami that could serve as an early warning system for future volcanic collapses. Satellite data plays a key role in developing such early warning systems by providing monitoring capabilities. As early as late June 2018, the Moderate Resolution Imaging... read more

Publishing date: 13/11/2019

Data Source

Recommended Practices

On 12 November 2017 a 7.3 magnitude earthquake struck close to the town of Sarpol-e-Zahab in the Kermanshah province of the Islamic Republic of Iran. The earthquake ranked as the strongest of 2017 and among the deadliest for the decade, killing over 600 people. Fatalities were spread across the border province and destruction of local infrastructure, healthcare centers and emergency services made response harder. This Recommended Practice will outline the process for obtaining and processing SAR data before and after the 2017 earthquake for the purpose of creating actionable and helpful maps...

Evento

Image: NASA.

Learning Objectives: 


By the end of this training, attendees will be able to:

  • Create a flood map using Google Earth Engine
  • Generate a map characterizing areas where landslides have occurred
  • Generate a digital elevation model (DEM)
Course Format: 
  • This webinar series will consist of three, two-hour parts
  • Each part will include a presentation on the theory of the topic followed by a demonstration and exercise for attendees. 
  • This training is also available in Spanish. Please visit the Spanish page for more information.
  • A certificate of completion will also be available to participants who attend all sessions and complete the homework assignment, which will be based on the webinar sessions. Note: certificates of completion only indicate the attendee participated in all aspects of the training, they do not imply proficiency on... read more
CSSTEAP logo. Image: CSSTEAP.

The Asia-Pacific region faces major disaster risks in the form of earthquakes and tsunamis, tropical cyclones and typhoons, landslides, flash floods, avalanches and glacial lake outburst floods (GLOFs). Due to the large spatial extent of disasters affecting several people across countries, geospatial technology today finds a wider acceptance and an important tool for decision making process. As disaster management work usually involves a large number of different agencies working in different areas, the need for utilizing geo-information technologies in multiple disciplines to make critical decisions is very important. Space technology can be particularly useful in the risk assessment, monitoring, response, mitigation and preparedness phases of disaster management, including early warning.... read more

This webinar focuses on Flood History and - Risk as well as on Land Motion (subsidence), but related topics that will be touched upon are LU/LC and Change, Transport Infrastructure and Green Urban areas, as these are also relevant for assessing sustainability of cities with respect to Climate Resilience and Disaster Management. During the webinar use cases and applications of EO based solutions are demonstrated for several cities.

Advisory Support

Upon the request of the Ministry of Territorial Administration (MINAT), Government of Cameroon, UN-SPIDER carried out a week-long Institutional Strengthening Mission (ISM) to Yaoundé from 15 to 19 July. The mission aimed to strengthen the capacities of the Department of Civil Protection (DPC) of Cameroon in using space-based information in all phases of the disaster management cycle. It was the third UN-SPIDER mission to Cameroon after a Technical Advisory Mission (TAM) in 2011 and an Institutional Strengthening Mission (ISM) in 2012, the latter including a training course on “Remote Sensing for Disaster Management”.

Mission dates: 15/07/2019 to 19/07/2019
Regional Support Offices mentioned:

As part of the technical advisory support it provides to countries worldwide, UN-SPIDER carried out an Institutional Strengthening Mission to Nepal from 17 to 21 December 2018 upon the request of the government. The mission was a follow-up activity to the Technical Advisory Mission (TAM) to Nepal in July 2017 that assessed use of space-derived information in all aspects of disaster management and offered recommendations and action plan to strengthen the disaster risk management and emergency response in the country. The TAM and ISM were conducted with support from the Ministry of Home Affairs (MoHA). The Nepal GIS Society also offered support in organizing the programme.

Mission dates: 17/12/2018 to 21/12/2018

Pages

Hazard group

Terms in the same hazard group

Zircon - This is a contributing Drupal Theme
Design by WeebPal.