Within 24 hours of the catastrophic 2010 earthquake near Port-au-Prince, Haiti, space agencies and companies around the world tasked satellites with providing free images of the earthquake’s aftermath. Experts quickly analyzed and interpreted images taken from space, mapping out essential information for rescue workers on the ground: areas with many damaged buildings, roads likely closed by debris.
The information was provided through an international charter under which satellite operators around the world offer to share satellite data after a natural or man-made disaster. But now, a number of developing countries are taking steps to build their own national satellite programs, seeking more control over remote-sensing data to map and forecast disasters, monitor crop yields and track environmentally driven diseases such as malaria.
In a paper published recently in the journal Acta Astronautica, Danielle Wood, a PhD candidate in MIT’s Engineering Systems Division, and Annalisa Weigel, assistant professor of aeronautics and astronautics and engineering systems at MIT, examine countries including Nigeria, Malaysia and Thailand where nascent satellite programs have cropped up, thanks to a relatively recent philosophical change within the space industry.
“For the first few decades [of space exploration], satellites and their components were considered sort of craft items … they were built one-off, maybe two, and there were no assembly lines for space products,” Wood says. “This philosophy of specialized space technology meant it would always be expensive, and limited to a small group” of nations.
Wood says this philosophy began to shift in the 1980s and ’90s, when small companies and university-based groups started to explore the idea of building smaller, cheaper satellites from everyday electronics. The University of Surrey, one of the leaders of this movement, eventually spun out a company that today sells small remote-sensing satellites — “the size of a small refrigerator,” Wood says — to companies and government organizations. The company also offers training to countries including Nigeria, Turkey and Algeria, all of which have sent engineers to the United Kingdom to build and bring back a satellite.
“These countries are not just getting a new technology toy,” Wood says. “They’re also creating a new, first generation of experts that can help inform the country’s use of space technology to address local challenges.”
Those national experts, according to Wood, can go on to educate other countries, as was the case with South Korea. In the early 1990s, that country was one of the first to send engineers to Surrey to build satellites. South Korea has since cultivated a national satellite program, and has gone on to train engineers from other developing countries.
“Having learned from England, they are now training Malaysia and Dubai,” Wood says.
“Developments such as these make it possible to develop a small satellite for the cost of a few tens of thousands of dollars,” adds Werner Balogh, program officer for the United Nations Office for Outer Space Affairs. “This has further widened the space for possible new space players.”
Read the entire article at web.mit.edu/newsoffice/2011/developing-satellites-0804.html