The 1993 U.S. hantavirus pulmonary syndrome (HPS) outbreak was attributed to environmental conditions and increased rodent populations caused by unusual weather in 1991-92. In a case-control study to test this hypothesis, we estimated precipitation at 28 HPS and 170 control sites during the springs of 1992 and 1993 and compared it with precipitation during the previous 6 years by using rainfall patterns at 196 weather stations. We also used elevation data and Landsat Thematic Mapper satellite imagery collected the year before the outbreak to estimate HPS risk by logistic regression analysis. Rainfall at case sites was not higher during 1992-93 than in previous years. However, elevation, as well as satellite data, showed association between environmental conditions and HPS risk the following year. Repeated analysis using satellite imagery from 1995 showed substantial decrease in medium- to high-risk areas. Only one case of HPS was identified in 1996.
We tested environmental data from remote sensing and geographic information system maps as indicators of Sin Nombre virus (SNV) infections in deer mouse (Peromyscus maniculatus) populations in the Walker River Basin, Nevada and California. We determined by serologic testing the presence of SNV infections in deer mice from 144 field sites. We used remote sensing and geographic information systems data to characterize the vegetation type and density, elevation, slope, and hydrologic features of each site. The data retroactively predicted infection status of deer mice withup to 80% accuracy. If models of SNV temporal dynamics can be integrated with baseline spatial models, human risk for infection may be assessed with reasonable accuracy.
Since the launch of Landsat-1, remotely sensed data have been used to map features on the earth’s surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l’Observation de la Terre, and the National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing…
read moreBubonic plague, caused by the bacteria Yersinia pestis, persists as a public health problem in many parts of the world, including central Kazakhstan. Bubonic plague occurs most often in humans through a flea bite, when a questing flea fails to find a rodent host. For many of the plague foci in Kazakhstan the great gerbil is the major host of plague, a social rodent well-adapted to desert environments. Intensive monitoring and prevention of plague in gerbils started in 1947, reducing the number of human cases and mortalities drastically. However, the monitoring is labour-intensive and hence expensive and is now under threat due to financial constraints. Previous research showed that the occupancy rate of the burrow systems of the great gerbil is a strong indicator for the probability of a plague outbreak. The burrow systems are around 30 m in diameter with a bare surface. This paper aims to demonstrate the automatic classification of burrow systems in satellite images using object-…
read more