Tsunami

Definition

A tsunami is a series of travelling waves of extremely long length and period, generated when a large volume of ocean water is rapidly displaced by a sudden displacement of the seabed. These series of waves are generated by a displacement of massive amounts of water through underwater earthquakes, volcanic eruptions or landslides. Tsunami waves travel at very high speed across the ocean but as they begin to reach shallow water they slow down and the wave grows steeper (IRDR Glossary).

The majority of tsunami are generated by shallow large earthquakes in subduction zones. Tsunami is also known as seismic sea waves because it is most often generated by earthquakes (UNESCO).

Facts and figures

The word tsunami is derived from the Japanese word “tsu” and “nami”, meaning “Harbor” and “Wave” respectively.

The speed of tsunami waves depends on ocean depth rather than the distance from the source of the wave. Scientists can predict when a tsunami will arrive at various places by knowing the source characteristics of the earthquake that generated the tsunami and the characteristics of the seafloor along the paths to those places. When the ocean is over 19,685 feet (6,000 m) deep, unnoticed tsunami waves can travel over 500 mph (804.67 kmh). One coastal community may see no damaging tsunami wave activity while in another nearby community destructive waves can be large and violent. Reefs, bays, entrances to rivers, undersea features and the slope of the beach help to modify the tsunami as it approaches the coastline (NOAA).

Dependent on the distance of the tsunami from its source, it may be classified as a:

  • Local/near field tsunami A tsunami from a nearby source for which its destructive effects are confined to coasts less than 1 hour tsunami travel time or typically within about 100 km from its source.
  • Regional tsunami A tsunami that is capable of destruction in a particular geographic region.
  • Destructive tsunami Happens when tsunami waves become extremely large in height, they savagely attack coastlines, causing devastating property damage and loss of life. A small wave only 30 cm high in the deep ocean may grow into a much larger wave 30 m high as it sweeps over the shore.
  • Non-Destructive Tsunami Mostly happens as a result of minor earthquakes and/or other events. It can be due to the source being far away from land or the earthquake being too small to have any effect when approaching the shore. When a small tsunami comes to the shoreline it is often seen as a strong and fast-moving tide (Caribbean Tsunami Information Center).

UN-SPIDER Regional Support Offices with hazard-specific expertise

Related content on the Knowledge Portal

  • Landsat 3 was launched on March 5, 1978, three years after Landsat 2.
    The Landsat program’s technical and scientific success together with political and economic pressures lead to the decision to commercialize an operational Landsat. To this end, responsibility was slated to shift from NASA (a research and development agency) to the National Oceanic and Atmospheric Administration (NOAA), the agency charged with operating the weather satellites. This was done via Presidential Directive/NSC-54 signed on Nov. 16, 1979 which assigned NOAA “management responsibility for civil operational land remote sensing activites.” (However, operational management was not transfered from NASA to NOAA until 1983).
    Landsat 3 carried the same sensors as its predecessor: the Return Beam Vidicon (RBV) and the Multispectral Scanner (MSS). The RBV instrument on-board Landsat 3 had an improved 38 m ground...

    read more
    05/03/1978
  • Landsat 2 was launched into space onboard a Delta 2910 rocket from Vandenberg Air Force Base, California on January 22, 1975, two and a half years after Landsat 1. Originally named ERTS-B (Earth Resource Technology Satellite B), the spacecraft was renamed Landsat 2 prior to launch. The second Landsat was still considered an experimental project and was operated by NASA.
    Landsat 2 carried the same sensors as its predecessor: the Return Beam Vidicon (RBV) and the Multispectral Scanner System (MSS).
    On February 25, 1982 after seven years of service, Landsat 2 was removed from operations due to yaw control problems; it was offically decommissioned on July 27, 1983.

    Instruments:
    Return Beam Vidicon (RBV)
    Multispectral Scanner (MSS)
     

    22/01/1975
  • Landsat 1 was launched on July 23, 1972; at that time the satellite was known as the Earth Resources Technology Satellite (ERTS). It was the first Earth-observing satellite to be launched with the express intent to study and monitor our planet’s landmasses. To perform the monitoring, Landsat 1 carried two instruments: a camera system built by the Radio Corporation of America (RCA) called the Return Beam Vidicon (RBV), and the Multispectral Scanner (MSS) built by the Hughes Aircraft Company. The RBV was supposed to be the prime instrument, but the MSS data were found to be superior. In addition, the RBV instrument was the source of an electrical transient that caused the satellite to briefly lose altitude control, according to the Landsat 1 Program Manager, Stan Weiland.
    To help understand the data and to explore the potential applications of this new technology, NASA oversaw 300 private research investigators. Nearly one third of these were international scientists. These...

    read more
    23/07/1972
  • The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure, and vegetation. The Copernicus DEM is provided in 3 different instances. Two worldwide coverages at 90m (GLO-90) and 30m (GLO-30) resolution are openly available to the public for download via the PANDA Catalogue and FTP. A further European coverage (EEA-10) is provided at 10m resolution, but data is restricted to eligible users who meet required access rights.
  • The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure, and vegetation. The Copernicus DEM is provided in 3 different instances. Two worldwide coverages at 90m (GLO-90) and 30m (GLO-30) resolution are openly available to the public for download via the PANDA Catalogue and FTP. A further European coverage (EEA-10) is provided at 10m resolution, but data is restricted to eligible users who meet required access rights.
  • Publishing institution:
  • The Copernicus Open Access Hub provides complete, free and open access to Sentinel missions data.
    Publishing institution:
  • Facebook Connectivity Lab in collaboration with the Center for International Earth Science Information Network (CIESIN) at Colombia University combines machine vision AI with satellite imagery and census information to create population density maps. With the integration of demographic information, specifically related to age and gender, these maps collectively provide information on both the location and the demographic of a population in a certain country. The population density maps cover the majority of countries around the world.
  • Facebook Connectivity Lab in collaboration with the Center for International Earth Science Information Network (CIESIN) at Colombia University combines machine vision AI with satellite imagery and census information to create population density maps. With the integration of demographic information, specifically related to age and gender, these maps collectively provide information on both the location and the demographic of a population in a certain country. The population density maps cover the majority of countries around the world.
  • Having reliable and timely population distribution data can make a life or death difference for individuals facing crises or living in conflict-ridden regions. These data are also essential for development decision-making and planning and for monitoring progress towards the UN Sustainable Development Goals (SDGs) established by the international community. We need to know where people are located, what conditions they are facing, what infrastructure is available, and what basic services they can access. We also need to ensure that no one is left off the map in pursuit of meeting the SDGs. 

    Gridded population data, which often use remote sensing inputs to improve the spatial allocation of population within a country, are vital for all these purposes. Together with the  growing variety of applications that require spatial population data, there is now a bewildering array of population grids, and users need to know which ones are most suitable for their applications.

    ...

    read more

Term Parents

UN-SPIDER Regional Support Offices with hazard-specific expertise