Skip to main content
  • English
  • Español
  • Français

United
Nations

 

Office for Outer Space Affairs
UN-SPIDER Knowledge Portal

  • Inicio
  • Sobre nosotros
    • Sobre ONU-SPIDER
    • Acerca de UNOOSA
    • Publicaciones
    • Ofertas de trabajo
    • Conozca el Equipo
    • Contacto
  • Aplicación Espacial
    • Guías Tecnológicas
    • Mecanismos de Emergencia
    • Mecanismos de Recuperación
    • Red Internacional de Alerta de Asteroides
    • Grupo Asesor para la Planificación de Misiones Espaciales
    • Iniciativa Internacional sobre Meteorología Espacial
    • Tecnologías Espaciales en la ONU
    • Historias de Usuarios
  • Enlaces y Recursos
    • Aplicación de datos del mes
      • Disaster Recovery
    • Fuentes de Datos
    • SIG y Software de Percepción Remota
    • Recursos de capacitación en línea
    • Instituciones
  • Riesgos y Desastres
    • Gestión del Riesgo de Desastres
    • Alerta temprana
    • Gestión de Desastres y Emergencias
    • Amenazas Naturales
    • El Proceso de la Reducción de Desastres Post-2015
    • La ONU y la Gestión del Riesgo de Desastres
    • La ONU y Alerta Temprana
    • La ONU y la Gestión de Desastres
  • Asesoría
    • Misiones de Asesoría
    • Apoyo en caso de Emergencia
    • Asesoría Virtual
    • Prácticas Recomendadas
    • Actividades de Entrenamiento
    • Usos Prácticos
  • Redes
    • Oficinas Regionales de Apoyo
    • GP-STAR
    • IN-MHEWS
    • IWG-SEM
  • Proyectos
    • SPEAR
    • FOSAT-S
    • EvIDENz
    • Flood GUIDE
  • Noticias y Eventos
    • Noticias
    • Eventos
    • Eventos pasados

Breadcrumb

  • Home
  • USA: Satellite Data Can Improve Landslide Monitoring Prediction
  • USA: Satellite data can improve landslide monitoring prediction

USA: Satellite data can improve landslide monitoring prediction

The model can help reducing therefore their potentially devastating effectsThe model uses satellite data on rainfall, topographical features of slopes, and land cover remote and topographically complex regions

According to a group of researchers from the University of California, satellite data give crucial and reliable information for identifying, especially in remote mountainous regions, hotspots for landslides as well as for predicting these events, reducing therefore their potentially devastating effects.

Recognizing the limitations of ground-based observations in many developing countries due to lack of investment, researchers created a model that makes use of satellite data, and therefore a global reach that includes remote and topographically complex regions. "Landslides typically occur in mountainous regions where other sources of information, including radar and gauge measurements (used in standard global landslide models), are not available," Amir AghaKouchak, co-author and assistant professor at the Center for Hydrometeorology and Remote Sensing in Irvine, tells in a press release.

Indeed, the model uses satellite data on rainfall, topographical features of slopes, and land cover. Once tested on a dataset of previous landslides it will help predicting landslides, constituting the basis of a real-time, global landslide prediction system. However, the model also presents some limitations: it "cannot be considered as a general landslide model", since it does not cover earthquake-triggered landslides nor small-scale landslides either; furthermore, dense vegetation may for many areas represent a limitation and add uncertainty to the method. Nevertheless, the model can definitely help to improve landslide monitoring and preparedness.

Thomson Reuters Foundation
Thu, 1 Aug 2013 - 09:59

Footer menu

  • Contact
  • Terms of Use

User account menu

  • Log in