Skip to main content
  • English
  • Español
  • Français

United
Nations

 

Office for Outer Space Affairs
UN-SPIDER Knowledge Portal

  • Inicio
  • Sobre nosotros
    • Sobre ONU-SPIDER
    • Acerca de UNOOSA
    • Publicaciones
    • Ofertas de trabajo
    • Conozca el Equipo
    • Contacto
  • Aplicación Espacial
    • Guías Tecnológicas
    • Mecanismos de Emergencia
    • Mecanismos de Recuperación
    • Red Internacional de Alerta de Asteroides
    • Grupo Asesor para la Planificación de Misiones Espaciales
    • Iniciativa Internacional sobre Meteorología Espacial
    • Tecnologías Espaciales en la ONU
    • Historias de Usuarios
  • Enlaces y Recursos
    • Aplicación de datos del mes
      • Disaster Recovery
    • Fuentes de Datos
    • SIG y Software de Percepción Remota
    • Recursos de capacitación en línea
    • Instituciones
  • Riesgos y Desastres
    • Gestión del Riesgo de Desastres
    • Alerta temprana
    • Gestión de Desastres y Emergencias
    • Amenazas Naturales
    • El Proceso de la Reducción de Desastres Post-2015
    • La ONU y la Gestión del Riesgo de Desastres
    • La ONU y Alerta Temprana
    • La ONU y la Gestión de Desastres
  • Asesoría
    • Misiones de Asesoría
    • Apoyo en caso de Emergencia
    • Asesoría Virtual
    • Prácticas Recomendadas
    • Actividades de Entrenamiento
    • Usos Prácticos
  • Redes
    • Oficinas Regionales de Apoyo
    • GP-STAR
    • IN-MHEWS
    • IWG-SEM
  • Proyectos
    • SPEAR
    • FOSAT-S
    • EvIDENz
    • Flood GUIDE
  • Noticias y Eventos
    • Noticias
    • Eventos
    • Eventos pasados

Breadcrumb

  • Home
  • Aplicación Espacial
  • Taxonomy Pages
  • Using Multi-temporal Remote Sensor Imagery To Detect Earthquake-triggered Landslides
  • Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides

Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides

By gina.kelly | Tue, 9 Jun 2015 - 16:33
Landslide Monitoring
Relief & Response
Desplazamiento de masas
China
Landsat 4
Landslides are a major type of geohazards claiming thousands of casualties and billions of dollars in property damages every year. Catastrophic landslide activities are often triggered by some extreme events such as earthquakes, excessive precipitations, or volcanic eruptions. Quickly identifying the spatial distribution of landslides induced by these extreme events is crucial for coordinating rescue efforts and planning in situ investigations. In this study, we propose an automated method for detecting the spatial distribution of earthquake-triggered landslides by examining after-event vegetation changes. Central to this method is the use of pre- and post-event remote sensor images covering the same area. Geometric correction and radiometric normalization are performed before deriving a vegetation index from each image. Then, an image differencing procedure is applied to the two derived indices. With the resultant difference image, an initial landslide distribution map is generated by highlighting the pixels with a threshold percentage decrease in the brightness values as a direct result of the image subtraction. The
threshold percentage value is interactively determined by using a visual interpretation method. The final landslide distribution map is produced after using a modal filter to suppress boundary errors in the initial map. This method has been implemented in a test site, approximately 30km from the epicenter of the Sichuan earthquake (7.9 Ms) that struck on 12 May 2008. A pre-event Thematic Mapper image and a post-event Advanced Spaceborne Thermal Emission and Reflection Radiometer scene are used. The thematic accuracy assessment indicates that 90% of the landslides have correctly been mapped. Given the relatively simple procedures and the good mapping accuracy, the image processing and change detection method identified in this study seems to be promising from an operational perspective.
Attachment Tamaño
Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides.pdf (1 MB) 1 MB
http://sar.kangwon.ac.kr/satrs14/Temp_Landslide.pdf

Yang, X., & Chen, L. (2010). Using multi-temporal remote sensor imagery to detect earthquake-triggered landslides. International Journal of Applied Earth Observation and Geoinformation, 12(6), 487-495.

Footer menu

  • Contact
  • Terms of Use

User account menu

  • Log in