Skip to main content
  • English
  • Español
  • Français

United
Nations

 

Office for Outer Space Affairs
UN-SPIDER Knowledge Portal

  • Home
  • About Us
    • What is UN-SPIDER?
    • About UNOOSA
    • Publications
    • Jobs
    • Meet the Team
    • Contact
  • Space Application
    • Satellite Technology
    • Emergency Mechanisms
    • Recovery Mechanisms
    • International Asteroid Warning Network
    • Space Mission Planning Advisory Group
    • International Space Weather Initiative
    • Space Technologies in the UN
    • User Stories
  • Links & Resources
    • Data Applications
      • Disaster Recovery
    • Data Sources
    • GIS and Remote Sensing Software
    • Online Learning Resources
    • Institutions
  • Risks & Disasters
    • Disaster Risk Management
    • Early Warning Systems
    • Emergency and Disaster Management
    • Natural Hazards
    • Sendai Framework
    • The UN and Disaster Risk Management
    • The UN and Early Warning
    • The UN and Disaster Management
  • Advisory Support
    • Advisory Missions
    • Emergency Support
    • Virtual Advisory Support
    • Recommended Practices
    • Training Activities
    • Practical Uses
  • Network
    • Regional Support Offices
    • GP-STAR
    • MHEWS
    • IWG-SEM
  • Projects
    • SPEAR
    • SEWS-D
    • EvIDENz
    • Flood GUIDE
    • CommonSpace Initiative
    • Tonga Pilot Project
  • News & Events
    • News
    • Events Calendar
    • UN-SPIDER Events Archive

Breadcrumb

  • Home
  • Global Urban Footprint (GUF) Precise Map of Human Settlements Location
  • Global Urban Footprint (GUF) Precise Map of Human Settlements Location

Global Urban Footprint (GUF) Precise Map of Human Settlements Location

Mapping of built-up height and share of built-up area for the example of the city of Munich. The estimated average built-up height features a mean absolute error (MAE) of 2.7 m (i.e., less than one floor) and the share of built-up area could be estimated with an MAE of 13.3 %, when compared to a reference data set.

To support exposure modelling by providing large-area information about the physical morphology of urban environments, a fully automated processing chain based on imagery of the satellite mission Sentinel-2, operated by the European Space Agency (ESA) in the frame of the European Union Copernicus Programme, and of the German satellite mission TanDEM-X is being  developed for applications in disaster risk reduction worldwide. 

Recent earth observation missions feature a notable tradeoff between a fairly high spatial resolution and large-area coverage. In particular, the TanDEM-X mission is a spaceborne radar interferometer which delivers a global digital surface model with an unprecedented pixel spacing of 0.4 arc seconds (~12m). In addition, ESA’s recently launched Sentinel-2 satellites provide multispectral imagery with a spatial resolution of 10m for the bands covering visible light and near-infrared and a repetition rate with the current constellation of two satellites of about 5 days. The developed workflow comprises three main modules. The first module relies on the so-called Global Urban Footprint, which provides binary information on “built-up” and “non built-up” areas. The second module comprises the derivation of height information of objects in urban environments from the digital surface model generated by the TanDEM-X mission. The third module contains the computation of the features that are used for characterization of the urban morphology using Sentinel-2 imagery. The final output comprises built-up heights and share of built-up areas of urban environments.

This initiative aims at quantitatively characterizing urban environments without the incorporation of prior knowledge and a priori determination of thematic classes according to specific semantics. This is done to allow for consistent and automated large-area analysis. Moreover, this way, local peculiarities are bypassed, and a more objective statistical description of settlements is provided. Such a quantitative characterization can be transferred into thematic classes a posteriori and allows also for a targeted collection of in situ knowledge for specific applications in exposure mapping.

Geiß, C., Wurm, M., Taubenböck, H. (2017) Towards large area morphologic characterization of urban environments using the TanDEM-X mission and Sentinel-2, JURSE 2017 - Joint Urban Remote Sensing Event, pp. pending. Joint Urban Remote Sensing Event, 6.-8. March 2017, Dubai, United Arab Emirates.

Geiß, C., Wurm, M., Breunig, M., Felbier, A., and Taubenböck, H. (2015): Normalization of TanDEM-X DSM Data in Urban Environments with Morphological Filters. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4348-4362.

German Aerospace Center (DLR)
Pilot/pre-operational
National
Priority 1: Understanding disaster risk
Yes
Exposure
Drought

Footer menu

  • Contact
  • Terms of Use

User account menu

  • Log in