Drought

Definition

Drought may be considered in general terms a consequence of a reduction over an extended period of time in the amount of precipitation that is received, usually over a season or more in length. It is a temporary aberration, unlike aridity, which is a permanent feature of the climate. Seasonal aridity (i.e., a well-defined dry season) also needs to be distinguished from drought. It should be noted that drought is a normal, recurrent feature of climate, and it occurs in virtually all climatic regimes (UNDDR).

Facts and figures

Droughts are often predictable: periods of unusual dryness are normal in all weather systems. Advance warning is possible (WHO).

By 2025, 1.8 billion people will experience absolute water scarcity, and 2/3 of the world will be living under water stressed conditions (UNCCD).

Drought can be defined according to meteorological, agricultural, hydrological and socio-economic criteria.

  • Meteorological, when precipitation departs from the long-term normal
  • Agricultural, when there is insufficient soil moisture to meet the needs of a particular crop at a particular time. Agricultural drought is typically evident after meteorological drought but before a hydrological drought
  • Hydrological, when deficiencies occur in surface and subsurface water supplies
  • Socio-economic, when human activities are affected by reduced precipitation and related water availability. This form of drought associates human activities with elements of meteorological, agricultural, and hydrological drought (FAO).

UN-SPIDER Regional Support Offices with hazard-specific expertise

Related content on the Knowledge Portal

  • ResourceSat-2 is a data continuity mission of ISRO (Indian Space Research Organization) with improved spectral bands of the IRS-P6/ResourceSat-1. Each ResourceSat satellite carries three electrooptical cameras as its payload: LISS-3, LISS-4 and AWiFS. All the three imagers are multispectral pushbroom scanners with linear array CCDs as detectors.
    ResourceSat-2 provides continuity and increases the observation timeliness (repetivity) in tandem with ResourceSat-1.
    Additionally, the satellite carries an AIS payload for exactEarth (COMDEV), which is known as exactView 2 (EV 2).
    Resourcesat-2 was launched in April 2011.

    Instruments:
    AWiFS (Advanced Wide-Field Sensor)
    LISS-III (Linear Imaging Self-Scanning Sensor)
    S-AIS (Satellite-based Self-Scanning Sensor)
    LISS-IV Camera

    read more
    20/04/2011
  • Cartosat-2 is an advanced remote sensing satellite with a single panchromatic camera (PAN) capable of providing scene-specific spot imageries for cartographic applications. The camera is designed to provide imageries with better than one meter spatial resolution and a swath of 10 km. The satellite will have high agility with capability to steer along and across the track up to + 45 degrees. It will be placed in a sun-synchronous polar orbit at an altitude of 630 km. It will have a revisit period of four days. The re-visit can be improved to one day with suitable orbit manoeuvres.

    Several new technologies like two mirror on axis single camera, Carbon Fabric Reinforced Plastic based electro optic structure, lightweight, large size mirrors, JPEG like data compression, advanced solid state recorder, high-torque reaction wheels and high performance star sensors are being employed in Cartosat-2.

    Instrument: PAN (

    read more
    12/07/2010
  • The TanDEM-X mission will survey all 150 million square kilometres of Earth's land surface several times over during its three-year mission. Apart from its high measuring-point density (a 12-metre grid) and high vertical accuracy (better than two metres), the elevation model generated by TanDEM-X will have another unrivalled advantage – being entirely homogenous, it will serve as a basis for maps that are globally consistent. Conventional maps are often fragmented along national borders, or difficult to reconcile as they are based on different survey methods or because of time lags between survey campaigns. Together TanDEM-X and TerraSAR-X are form the first configurable synthetic aperture radar interferometer in space. Besides this primary goal, the mission has several secondary objectives based on new and innovative methods such as along-track interferometry, polarimetric synthetic aperture radar interferometry, digital beamforming and bistatic radar. The TanDEM-X…

    read more
    21/06/2010
  • GOES 15 (GOES-P) is an American weather satellite, which will form part of the Geostationary Operational Environmental Satellite (GOES) system operated by the US National Oceanic and Atmospheric Administration. The spacecraft was constructed by Boeing, and is the last of three GOES satellites to be based on the BSS-601 bus. In addition to weather forecasting on Earth, a key instrument onboard GOES-P, the Solar X-Ray Imager (SXI), will help NOAA continue monitoring solar conditions.

    Instruments:
    GEOS&R (Geostationary Search and Rescue)
    SEM/MAG (SEM / Magnetometer)
    SOUNDER (GOES Sounder)
    SXI (Solar X-ray Imager)
    SEM/EPS (SEM / Energetic Particles Sensor)
    SEM/HEPAD (SEM / High Energy Proton and Alpha Particles Detector)
    SEM/XRS-EUV (SEM / X-Ray Sensor - Extreme Ultra-Violet Sensor)
    DCIS (Data Collection and Interrogation Service)
    IMAGER (GOES Imager)

    read more
    04/03/2010
  • WorldView-2 (WV2) is a commercial imaging satellite of DigitalGlobe Inc. of Longmont, CO, USA (follow-on spacecraft to WorldView-1). The overall objective is to meet the growing commercial demand for high-resolution satellite imagery (0.46 cm Pan, 1.8 m MS at nadir - representing one of the highest available spaceborne resolutions on the market).

    In the fall of 2003, DigitalGlobe had received a contract from NGA (National Geospatial-Intelligence Agency) of Washington DC to provide high-resolution imagery from the next-generation commercial imaging satellites. The contract award was made within NGA's NextView program. The NGA requirements called for imagery with a spatial resolution of 0.5 m panchromatic and 2 m MS (Multispectral) data.

    The WorldView-2 sensor provides a high resolution panchromatic band and eight (8) multispectral bands; four (4) standard colors (red, green, blue, and near-infrared 1) and four (4) new bands (coastal,…

    read more
    08/10/2009
  • The Deimos-1 mission is fully owned and operated by Deimos Imaging (DMI), an UrtheCast company. Deimos-1 satellite was successfully launched on 29 July 2009 from the Baikonur Launch Complex (Kazakhstan) in the Russian-Ukrainian Dnepr launcher. The mission is fully dedicated to Earth Observation and captures images all around the world. Thus, currently the Deimos-1 system provides capabilities well above and beyond the design goals.
    The payload is a three-band multispectral imager system with 22m Ground Sample Distance (GSD) at nominal altitude (663 km) with 625 km swath, 8 or 10 bits radiometric depth available. Imager delivers data in three spectral bands, very close to the Near-Infrared (NIR), Red (R) and Green (G) bands in the Landsat series of US satellites. The satellite payload is a dual bank linear CCD push broom imager, so that banks are mounted at an angle to provide a wide imaging swath, one of the most characteristics Deimos-1 features.

    Renamed to Geosat-1…

    read more
    29/07/2009
  • UK-DMC2 is based on the SSTL-100 satellite platform and was launched in 2009 for the commercial imaging company, DMCii (a subsidiary of SSTL). It provides high resolution (22m) imagery from a sun-synchronous orbit over very large areas (650km swath, 2000km along track), with a daily revisit to global targets.
    The UK-DMC2 satellite carries a multispectral optical instrument with a spatial resolution of 22 m with three spectral bands (red, green, NIR) and a wide swath of more than 600 km. UK-DMC2 operates within the Disaster Monitoring Constellation, the first Earth observation constellation of low cost small satellites providing daily images for applications including global disaster monitoring. The Disaster Monitoring Constellation is coordinated by DMC International Imaging Ltd (DMCii) for disaster response within the International Charter: Space & Major Disasters.

    Instrument: SLIM6-22
    - compact imager with 22m GSD at 686km orbital height…

    read more
    29/07/2009
  • NOAA-19, designated NOAA-N' (NOAA-N Prime) prior to launch, is the last of the United States National Oceanic and Atmospheric Administration's POES series of weather satellites. NOAA-19 was launched on February 6, 2009.

    On November 4, 2008, NASA announced that the satellite had arrived at Vandenberg aboard a C-5 Galaxy military transport aircraft. Installation of the payload fairing took place January 27, 2009; second stage propellant was loaded on January 31.

    Several attempts were made to conduct the launch. The first attempt was scrubbed after a failure was detected in a launch pad gaseous nitrogen pressurization system. The second attempt was scrubbed after the failure of a payload fairing air conditioning compressor, which is also part of the ground support equipment at the launch pad.

    The satellite was successfully launched at about 2:22 a.m. PST. February 6, 2009 aboard a Delta II flying in…

    read more
    06/02/2009
  • The GeoEye-1 satellite sensor was successfully launched on September 6, 2008. The satellite, which was launched at Vanderberg Air Force Base, California, provides a resolution of 0.46 meters.

    GeoEye-1 is capable of acquiring image data at 0.46 meter panchromatic (B&W) and 1.84 meter multispectral resolution. It also features a revisit time of less than three days, as well as the ability to locate an object within just three meters of its physical location.
    The GeoEye-1 satellite sensor features the most sophisticated technology ever used in a commercial remote sensing system. This sensor is optimized for large projects, as it can produce over 350,000 square kilometers of pan-sharpened multispectral satellite imagery every day.
    GeoEye-1 has been flying at an altitude of about 681 kilometers and is capable of producing imagery with a ground sampling distance of 46 centimeters, meaning it can detect objects of that diameter or greater.
    During late summer of…

    read more
    06/09/2008
  • RapidEye is a full end-to-end commercial Earth Observation system comprising a constellation of five minisatellites, a dedicated SCC (Spacecraft Control Center), a data downlink ground station service, and a full ground segment designed to plan, acquire and process up to 5 million km2 of imagery every day to generate unique land information products.
    The system is owned and operated by BlackBridge. MDA (MacDonald, Dettwiler and Associates Ltd) was the mission prime contractor and was responsible for the delivery of the space and ground segments, launch of the constellation, and on-orbit commissioning and camera calibration. The two major subcontractors to MDA were SSTL (Surrey Satellite Technology Ltd.) for the spacecraft bus, SCC and spacecraft AIT (Assembly, Integration and Test) services, as well as Jena Optronik GmbH (JOP) who provided the 5-band multispectral imager (RGB, red edge, and near IR bands).
    The RapidEye constellation represents a major milestone…

    read more
    29/08/2008

Term Parents

UN-SPIDER Regional Support Offices with hazard-specific expertise