Flood

Definition

Flood is usually used as a general term to describe the overflow of water from a stream channel into normally dry land in the floodplain (riverine flooding), higher-than–normal levels along the coast and in lakes or reservoirs (coastal flooding) as well as ponding of water at or near the point where the rain fell (flash floods) (IRDR Glossary).

Facts and figures

Floods are the natural hazard with the highest frequency and the widest geographical distribution worldwide. According to the Organization for Economic Cooperation and Development (OECD)  flooding is one of the most common, widespread and destructive natural perils, affecting approximately 250 million people worldwide and causing more than $40 billion in damage and losses on an annual basis (OECD).

Flooding occurs most commonly from heavy rainfall when natural watercourses lack the capacity to convey excess water. It can also result from other phenomena, particularly in coastal areas, by a storm surge associated with a tropical cyclone, a tsunami or a high tide. Dam failure, triggered by an earthquake, for instance, will lead to flooding of the downstream area, even in dry weather conditions.

Various climatic and non-climatic processes can result in different types of floods: riverine floods, flash floods, urban floods, glacial lake outburst floods and coastal floods.

Flood magnitude depends on precipitation intensity, volume, timing and phase, from the antecedent conditions of rivers and the drainage basins (frozen or not or saturated soil moisture or unsaturated) and status. Climatological parameters that are likely to be affected by climate change are precipitation, windstorms, storm surges and sea-level rise (UNDRR).

When floodwaters recede, affected areas are often blanketed in silt and mud. The water and landscape can be contaminated with hazardous materials such as sharp debris, pesticides, fuel, and untreated sewage. Potentially dangerous mold blooms can quickly overwhelm water-soaked structures. Residents of flooded areas can be left without power and clean drinking water, leading to outbreaks of deadly waterborne diseases like typhoid, hepatitis A, and cholera (UNDRR).

UN-SPIDER Regional Support Offices with hazard-specific expertise

Related content on the Knowledge Portal

  • The satellites SPOT 1, 2 and 3 (Satellite Probatoire de l'Observation de la Terre) were the first generation of SPOT earth observation satellites operated by Spot Image.

    The first generation SPOT satellites were built on the SPOT Mk.1 bus with a lifetime of three years.

    The SPOT satellites were identical, with each carrying two identical HRV (High Resolution Visible) imaging instruments that were able to operate in two modes, either simultaneously or individually. The two spectral modes are panchromatic and multispectral. The panchromatic band had a resolution of 10 meters, and the three multispectral bands (G,R,NIR) have resolutions of 20 meters.

    SPOT 3 was orbited on 26 September 1993 on an Ariane-40 H10 rocket. It ended operations in November 1996 due to problems with its stabilization system.

    Instruments: 2 HRVs
    - 4 spectral bands (1 panchromatic, 3 multispectral)
    - imaging swath: 60km x 60km to 80km

    read more
    26/09/1993
  • The satellites SPOT 1, 2 and 3 (Satellite Probatoire de l'Observation de la Terre) were the first generation of SPOT earth observation satellites operated by Spot Image.

    The first generation SPOT satellites were built on the SPOT Mk.1 bus with a lifetime of three years.

    The SPOT satellites were identical, with each carrying two identical HRV (High Resolution Visible) imaging instruments that were able to operate in two modes, either simultaneously or individually. The two spectral modes are panchromatic and multispectral. The panchromatic band had a resolution of 10 meters, and the three multispectral bands (G,R,NIR) have resolutions of 20 meters.

    SPOT-2 was launched on 22 January 1990, on an Ariane-40 H10 rocket. It operated until July 2009. Its orbit was lowered to ensure reentry within 25 years.

    Instruments: 2 HRVs
    - 4 spectral bands (1 panchromatic, 3 multispectral)
    - imaging swath: 60km x 60km to 80km

    read more
    22/01/1990
  • The satellites SPOT 1, 2 and 3 (Satellite Probatoire de l'Observation de la Terre) were the first generation of SPOT earth observation satellites operated by Spot Image.

    The first generation SPOT satellites were built on the SPOT Mk.1 bus with a lifetime of three years.

    The SPOT satellites were identical, with each carrying two identical HRV (High Resolution Visible) imaging instruments that were able to operate in two modes, either simultaneously or individually. The two spectral modes are panchromatic and multispectral. The panchromatic band had a resolution of 10 meters, and the three multispectral bands (G,R,NIR) have resolutions of 20 meters.

    SPOT 1 was launched with the last Ariane-1 rocket on 22 February 1986. At the end of operations in 2003, the orbit was lowered to gradually lose altitude until reentry.

    Instruments: 2 HRVs
    - 4 spectral bands (1 panchromatic, 3 multispectral)
    - imaging swath: 60km x 60km to 80km

    read more
    22/02/1986
  • Landsat 5 was launched from Vandenberg Air Force Base in California on March 1, 1984, and like Landsat 4, carried the Multispectral Scanner (MSS) and the Thematic Mapper (TM) instruments. Landsat 5 delivered Earth imaging data nearly 29 years - and set a Guinness World Record For 'Longest Operating Earth Observation Satellite', before being decommissioned on June 5, 2013.
    The Landsat 5 satellite orbited the the Earth in a sun-synchronous, near-polar orbit, at an altitude of 705 km (438 mi), inclined at 98.2 degrees, and circled the Earth every 99 minutes.  The satellite had a 16-day repeat cycle with an equatorial crossing time: 9:45 a.m. +/- 15 minutes.  Landsat 5 data were acquired on the Worldwide Reference System-2 (WRS-2) path/row system, with swath overlap (or sidelap) varying from 7 percent at the Equator to a maximum of approximately 85 percent at extreme latitudes. 
    Landsat 5 long outlived its…

    read more
    01/03/1984
  • Landsat 4 was launched on July 16, 1982. The Landsat 4 spacecraft was significantly different than that of the previous Landsats, and Landsat 4 did not carry the RBV instrument.
    In addition to the Multispectral Scanner System (MSS) instrument, Landsat 4 (and Landsat 5) carried a sensor with improved spectral and spatial resolution, i.e., the new satellites could see a wider (and more scientifically-tailored) portion of the electromagnetic spectrum and could see the ground in greater detail. This new instrument was known as the Thematic Mapper (TM).
    Landsat 4 was kept in orbit for housekeeping telemetry command and tracking data (which it downlinked via a separate data path, the S-band) until it was decommissioned in 2001.
    While Landsat 4 was built and launched by NASA, NOAA initially oversaw the operations of the satellite. Landsat 4 operations were contracted out to the Earth Observation Satellite Company (…

    read more
    16/07/1982
  • Landsat 3 was launched on March 5, 1978, three years after Landsat 2.
    The Landsat program’s technical and scientific success together with political and economic pressures lead to the decision to commercialize an operational Landsat. To this end, responsibility was slated to shift from NASA (a research and development agency) to the National Oceanic and Atmospheric Administration (NOAA), the agency charged with operating the weather satellites. This was done via Presidential Directive/NSC-54 signed on Nov. 16, 1979 which assigned NOAA “management responsibility for civil operational land remote sensing activites.” (However, operational management was not transfered from NASA to NOAA until 1983).
    Landsat 3 carried the same sensors as its predecessor: the Return Beam Vidicon (RBV) and the Multispectral Scanner (MSS). The RBV instrument on-board Landsat 3 had…

    read more
    05/03/1978
  • Landsat 2 was launched into space onboard a Delta 2910 rocket from Vandenberg Air Force Base, California on January 22, 1975, two and a half years after Landsat 1. Originally named ERTS-B (Earth Resource Technology Satellite B), the spacecraft was renamed Landsat 2 prior to launch. The second Landsat was still considered an experimental project and was operated by NASA.
    Landsat 2 carried the same sensors as its predecessor: the Return Beam Vidicon (RBV) and the Multispectral Scanner System (MSS).
    On February 25, 1982 after seven years of service, Landsat 2 was removed from operations due to yaw control problems; it was offically decommissioned on July 27, 1983.

    Instruments:
    Return Beam Vidicon (RBV)
    Multispectral Scanner (MSS)
     

    read more
    22/01/1975
  • Landsat 1 was launched on July 23, 1972; at that time the satellite was known as the Earth Resources Technology Satellite (ERTS). It was the first Earth-observing satellite to be launched with the express intent to study and monitor our planet’s landmasses. To perform the monitoring, Landsat 1 carried two instruments: a camera system built by the Radio Corporation of America (RCA) called the Return Beam Vidicon (RBV), and the Multispectral Scanner (MSS) built by the Hughes Aircraft Company. The RBV was supposed to be the prime instrument, but the MSS data were found to be superior. In addition, the RBV instrument was the source of an electrical transient that caused the satellite to briefly lose altitude control, according to the Landsat 1 Program Manager, Stan Weiland.
    To help understand the data and to explore the potential applications of this new technology, NASA oversaw 300 private research investigators. Nearly one third of these were international scientists…

    read more
    23/07/1972
  • Disaster response efforts benefit substantially from the use of information on the geographical extent of the hazard that triggered the disaster. For example, maps of the geographical extent of floods allow disaster managers to become aware of all the communities and assets that may have been affected. Such maps allow disaster managers to estimate the number of people that may seek temporary shelter in safe areas, to identify crops and critical infrastructure that may have been affected, roads that can still be used to deliver humanitarian assistance to affected areas, and the identification of other roads which can no longer be used because they are flooded.

    Satellite imagery has been, for the past three decades, the key source of geospatial data to generate such maps of affected areas. With the advent of radar imagery, flooded areas could be identified even under cloudy conditions. However, unwanted reflections of radar signals from buildings and vegetation in flooded areas…

    read more
    11/10/2024

UN-SPIDER Regional Support Offices with hazard-specific expertise