This Copernicus Sentinel-1 image combines two acquisitions over the same area of eastern Iraq, one from 14 November 2018 before heavy rains fell and one from 26 November 2018 after the storms. The image reveals the extent of flash flooding in red, near the town of Kut. Image: modified Copernicus Sentinel data (2018), processed by ESA, CC BY-SA 3.0 IGO.


Flood is usually used as a general term to describe the overflow of water from a stream channel into normally dry land in the floodplain (riverine flooding), higher-than–normal levels along the coast and in lakes or reservoirs (coastal flooding) as well as ponding of water at or near the point where the rain fell (flash floods) (IRDR Glossary).

Facts and figures

Floods are the natural hazard with the highest frequency and the widest geographical distribution worldwide. According to the Organization for Economic Cooperation and Development (OECD)  flooding is one of the most common, widespread and destructive natural perils, affecting approximately 250 million people worldwide and causing more than $40 billion in damage and losses on an annual basis (OECD).

Flooding occurs most commonly from heavy rainfall when natural watercourses lack the capacity to convey excess water. It can also result from other phenomena, particularly in coastal areas, by a storm surge associated with a tropical cyclone, a tsunami or a high tide. Dam failure, triggered by an earthquake, for instance, will lead to flooding of the downstream area, even in dry weather conditions.

Various climatic and non-climatic processes can result in different types of floods: riverine floods, flash floods, urban floods, glacial lake outburst floods and coastal floods.

Flood magnitude depends on precipitation intensity, volume, timing and phase, from the antecedent conditions of rivers and the drainage basins (frozen or not or saturated soil moisture or unsaturated) and status. Climatological parameters that are likely to be affected by climate change are precipitation, windstorms, storm surges and sea-level rise (UNDRR).

When floodwaters recede, affected areas are often blanketed in silt and mud. The water and landscape can be contaminated with hazardous materials such as sharp debris, pesticides, fuel, and untreated sewage. Potentially dangerous mold blooms can quickly overwhelm water-soaked structures. Residents of flooded areas can be left without power and clean drinking water, leading to outbreaks of deadly waterborne diseases like typhoid, hepatitis A, and cholera (UNDRR).

Related content on the Knowledge Portal

SAM Satellite

Landsat 4 was launched on July 16, 1982. The Landsat 4 spacecraft was significantly different than that of the previous Landsats, and Landsat 4 did not carry the RBV instrument.
In addition to the Multispectral Scanner System (MSS) instrument, Landsat 4 (and Landsat 5) carried a sensor with improved spectral and spatial resolution, i.e., the new satellites could see a wider (and more scientifically-tailored) portion of the electromagnetic spectrum and could see the ground in greater detail. This new instrument was known as the Thematic Mapper (TM).
Landsat 4 was kept in orbit for housekeeping telemetry command and tracking data (which it downlinked via a separate data path, the S-band) until it was decommissioned in 2001.
While Landsat 4 was built and launched by NASA, NOAA initially oversaw the operations of the satellite. Landsat 4 operations were contracted out to the Earth Observation Satellite Company (EOSAT) corporation in 1984.
... read more

Launch date:

Landsat 3 was launched on March 5, 1978, three years after Landsat 2.
The Landsat program’s technical and scientific success together with political and economic pressures lead to the decision to commercialize an operational Landsat. To this end, responsibility was slated to shift from NASA (a research and development agency) to the National Oceanic and Atmospheric Administration (NOAA), the agency charged with operating the weather satellites. This was done via Presidential Directive/NSC-54 signed on Nov. 16, 1979 which assigned NOAA “management responsibility for civil operational land remote sensing activites.” (However, operational management was not transfered from NASA to NOAA until 1983).
Landsat 3 carried the same sensors as its predecessor: the Return Beam Vidicon (RBV) and the Multispectral Scanner (MSS). The RBV instrument on-board Landsat 3 had an improved 38 m ground... read more

Launch date:

Landsat 2 was launched into space onboard a Delta 2910 rocket from Vandenberg Air Force Base, California on January 22, 1975, two and a half years after Landsat 1. Originally named ERTS-B (Earth Resource Technology Satellite B), the spacecraft was renamed Landsat 2 prior to launch. The second Landsat was still considered an experimental project and was operated by NASA.
Landsat 2 carried the same sensors as its predecessor: the Return Beam Vidicon (RBV) and the Multispectral Scanner System (MSS).
On February 25, 1982 after seven years of service, Landsat 2 was removed from operations due to yaw control problems; it was offically decommissioned on July 27, 1983.

Return Beam Vidicon (RBV)
Multispectral Scanner (MSS)

Launch date:

Landsat 1 was launched on July 23, 1972; at that time the satellite was known as the Earth Resources Technology Satellite (ERTS). It was the first Earth-observing satellite to be launched with the express intent to study and monitor our planet’s landmasses. To perform the monitoring, Landsat 1 carried two instruments: a camera system built by the Radio Corporation of America (RCA) called the Return Beam Vidicon (RBV), and the Multispectral Scanner (MSS) built by the Hughes Aircraft Company. The RBV was supposed to be the prime instrument, but the MSS data were found to be superior. In addition, the RBV instrument was the source of an electrical transient that caused the satellite to briefly lose altitude control, according to the Landsat 1 Program Manager, Stan Weiland.
To help understand the data and to explore the potential applications of this new technology, NASA oversaw 300 private research investigators. Nearly one third of these were international scientists. These... read more

Launch date:

UN-SPIDER Training Activity

Cartographie des inondations par l‘imagerie satellitaire radar | Date of training: 26/11/2020 to 27/11/2020
UN-SPIDER Online Training on Flood Mapping Using Sentinel-1 SAR Imagery and Google Earth Engine | Date of training: 21/10/2020 to 23/10/2020
Regional Support Offices mentioned:

Advisory Support

Mission dates: 01/11/2020
Regional Support Offices mentioned:
Mission dates: 01/09/2020 to 30/09/2020
Regional Support Offices mentioned:
Mission dates: 12/08/2020 to 22/12/2020
Regional Support Offices mentioned:


Hazard group

Terms in the same hazard group

Zircon - This is a contributing Drupal Theme
Design by WeebPal.